Characterization of a-C/B:H thin films for KSTAR boronization

Jong-Ho Sun^{1,3}, Suk-Ho Hong^{2,3}, Hyun-Jong Woo^{1,3}, Eun-Kyong Park^{1,3}, Hye-Ran Kim^{1,3}, and Kyu-Sun Chung^{1,3}

¹Department of Electrical Engineering, Hanyang University, Seoul, Korea ²National Fusion Research Institute, Daejeon, Korea ³Center for Edge Plasma Science (cEps), Hanyang University, Seoul, Korea

KSTAR vacuum vessel has been boronized by carborane ($C_2B_{10}H_{12}$) to reduce various kinds of impurities including carbon and oxygen from the wall, since carborane is solid, non-toxic, non-explosive and is easily evaporated, while diborane (B_2D_6) is toxic and explosive. To find the best wall condition for the removal of contaminants before application to KSTAR, various amounts (0.3g, 0.5g, 1g) of carborane are tested in a test chamber, where filament discharge was generated in the mixture of helium and carborane with the same KSTAR target pressure (~ 5 mTorr) from base pressure ($\sim 10^{-7}$ Torr). Discharge is performed by a pulse sequence mode with 3 second power on and 5 second power off. Deposited films of a-C/B:H are characterized by ellipsometery, AES and XPS, and are compared with those of KSTAR.

Keywords : Boronization, a-C/B:H film, Wall conditioning, KSTAR