TTP-017

Electrical properties and thermal stability of oxygen incorporated GeSbTe films

<u>장문형</u>¹, 박숭종¹, 임동혁¹, 박성진¹, 조만호¹, 조윤호², 이종혼²

¹연세대학교 물리 및 응용물리 사업단, ²고려대학교 재료공학과

Oxygen incorporated Ge₂Sb₂Te₅ (GST) films were prepared by an ion beam sputtering deposition (IBSD) method. From the I-V curves, the V_{th} value varies with the oxygen content. Ge-deficient hexagonal phases are responsible for the observed unstability and decrease in v_h values. In the case of a GST film with an elevated oxygen content of 30.8 %, the GST layer melted at 9.02 V due to the instability conferred by the high oxygen content. The formation of Ge-deficient hexagonal phases such as GeSb₂Te₄ and Sb₂Te₃ appear to be responsible for the V_{th} variation. Impedance analyses indicated that the resistance in GST films with oxygen contents of 16.7 % and 21.7 % had different origins. Thermal desorption spectroscopy (TDS)data indicate that moisture and hydrocarbons were more readily desorbed at higher oxygen content because the oxygen incorporated GST films are more hydrophilic than undoped GST films.