한국정보통신학회:학술대회논문집 (Proceedings of the Korean Institute of Information and Commucation Sciences Conference)
- 한국해양정보통신학회 2010년도 춘계학술대회
- /
- Pages.205-208
- /
- 2010
Zerinke 모멘트와 신경망을 이용한 온라인 필기체 숫자 인식
Recognition of Online Handwritten Digit using Zernike Moment and Neural Network
- Mun, Won-Ho (Dept. of Computer Engineering, Pusan National University) ;
- Choi, Yeon-Suk (Dept. of Computer Engineering, Pusan National University) ;
- Cha, Eui-Young (Dept. of Computer Engineering, Pusan National University)
- 발행 : 2010.05.27
초록
본 논문에서는 Zernike 모멘트와 backpropagation신경망을 이용한 온라인 필기체 숫자 인식 방법을 소개한다. 마우스로 통해 입력된 숫자 정보는 전처리를 통해 시간에 순서적이고, 연속적인 좌표 정보로 변환된다. 전처리된 입력 좌표는 Zernike 모멘트(moment)와 각도 특징(angulation feature)을 이용하여 각 숫자가 가지는 고유의 특징을 만들어 낸다. 이러한 특징은 크기, 모양, 틀어진 정도에 상관없이 항상 일정한 성질을 가진다. 제안된 방법으로 추출된 특징은 패턴 구분을 위해 back propagation 신경망의 입력으로 사용된다. 본 논문은 200개의 필기체 숫자 데이터베이스를 이용하여 실험을 한 결과, 제시된 방법은 적은 학습데이터만으로 학습이 가능할 뿐만 아니라 좋은 인식률을 보여준다.
We introduce a novel feature extraction scheme for online handwritten digit based on utilizing Zernike moment and angulation feature. The time sequential signal from mouse movement on the writing pad is described as a sequence of consecutive points on the x-y plane. So, we can create data-set which are successive and time-sequential pixel position data by preprocessing. Data preprocessed is used for Zernike moment and angulation feature extraction. this feature is scale-, translation-, and rotation-invariant. The extracted specific feature is fed to a BP(backpropagation) neural network, which in turn classifies it as one of the nine digits. In this paper, proposed method not noly show high recognition rate but also need less learning data for 200 handwritten digit data.