위성영상 정보처리 오픈소스 활용: 개발환경 분석†

Open Source Application in Satellite Image Processing: Analysis of Development Environment

강상구* · 이기원

Sanggoo Kang* · Kiwon Lee 한성대학교 정보시스템공학과

인공위성 기술의 발전에 따라 다양한 센서를 탑재한 위성을 통해서 우리가 얻 을 수 있는 데이터는 정확해지고, 다양해 졌다. 데이터를 정보로써 활용하기 위해 서는 위성영상처리 소프트웨어를 통해서 적절한 과정을 거쳐야한다. 이러한 과정 을 국내에서는 주로 상업용 소프트웨어에 의존하는 경향이 크다. 이 원인중 하나가 위성영상처리 오픈소스 소프트웨어에 대 한 연구가 많지 않아 이것을 사용하는데 제약이 따른다는 것이다. 따라서 본 논문 에서는 오픈소스를 기반으로 하는 위성영 상 정보처리 소프트웨어 중에서 OSSIM, Opticks, OTB에 대한 기능적분석 및 개발 환경에 대해서 분석하고자 한다. 이는 상 당한 수요를 보이고 있지만 상업용 소프

트웨어에 거의 의존하고 있는 위성영상 정보처리의 방법 다각화와 오픈소스의 개 발 및 활용 증대에 기여할 것으로 기대된 대11.

오픈소스 소프트웨어는 소스 코드가 공개되어 있기 때문에 누구든지 개발에 참여할 수 있다. 본 논문에서 분석하는 3가지 소프트웨어 역시 개발주체와 커뮤니티사이트를 중심으로 개발이 이루어지고 있음을 확인할 수 있었다. 오픈소스 소프트웨어를 개발하기 위해서는 그 소프트웨어가 요구하는 환경을 파악하는 것이 중요하기 때문에 각 소프트웨어의 개발환경을 분석하였고, 이것은 Table 1과 같다. 또한 Table 2에서는 사용자의 입장에서 필요한각 소프트웨어의 기능을 분석하였다.

Table 1. Software development environment[2,3,4]

W=windows, L=linux, U=unix, M=mac, S=solaris

Environment	OSSIM	Opticks	ОТВ
Operating System	W, L, M, S	W, S	W, L, U, M
Bit	32bit / 64 bit	32bit / 64bit / S 64bit	32bit / 64bit
Programming Language	C++, Python	C++, Python	C++, Python, Java
GUI Platform	Qt	Qt	FLTK
Dependency Library	GDAL, Collada, Qt, Open Scene Graph, etc. GDAL, Graphiz dxflib, GLEW,		GDAL, OTB, ITK, FLTK, libsvm, etc.
Licence	LGPL LGPL		CeCILL
Newest version	1.8.4	4.3.3	3.2
Home Page	www.ossim.org	www.opticks.org	www.orfeo-toolbox.org

[†] 본 연구는 항공우주연구원 위성정보연구소 "위성정보활용지원운영사업"에 의해 지원에 의해 수행되었습니다.

Table 2. OSSIM, Opticks and OTB function analysis [2,3,4]

●: Supported Feature, ●: Partly Supported Feature, ○: Weakly Supported Feature

Function	OSSIM	Opticks	ОТВ
Band Math	•	•	•
Band Selector	•	•	•
Brightness Contrast	•	•	•
Builder	•	•	
Calibration	•		•
Change Detection	•	0	•
Change Up Direction		•	
Classification	•		•
Clustering	•	•	•
Combine	•	•	
Convolution Matrix	•	•	<u> </u>
Correction	•	0	•
Elevation	•	0	
Feature Extraction	0	0	•
Fusion	•	•	•
Filtering	•	•	•
GCP Editor		•	•
Histogram	•	•	•
Homologous Point Extraction			•
HSI Adjustment	•	•	•
Layer	•	•	0
Orthorectification	•		•
Pan-sharpening	0	0	•
Principal Component Analysis	•	•	•
Reproject Image	•	•	•
SAR-Despeckle Image			•
SAR-Intensity			•
Script	0	•	0
Segmentation	0	0	•
Threshold	•	•	•
Web Map Service	•		•

본 논문에서는 위성영상처리 오픈소스 소프트웨어 3가지에 대해서 기능적분석과 개발환경에 대한 분석을 하였다. 이를 통 해서 기존에 상업용 소프트웨어에만 의존 하던 일들을 오픈소스 소프트웨어를 통해 서도 해결할 수 있을 것이고, 개발자 입 장에서는 필요한 기능을 추가하기 위한 참조가 용이해질 것으로 기대된다.

참고문헌

[1] Christophe, E., J. Inglada, and A. Giros, 2008. A Complete Solution For Mapping from High Resolution Satellite Images, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B4): 1263–1268.

- [2] http://www.opticks.org
- [3] http://trac.osgeo.org/ossim
- [4] http://www.orfeo-toolbox.org