Classification of Advertising Spam Reviews

제품 리뷰문에서의 광고성 문구 분류 연구

  • Park, Insuk (Department of Computer Engineering, Sejong University) ;
  • Kang, Hanhoon (Department of Computer Engineering, Sejong University) ;
  • Yoo, Seong Joon (Department of Computer Engineering, Sejong University)
  • Published : 2010.10.08

Abstract

본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단