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Abstract

In this paper, forward and reverse analysis is introduced in order to estimate the elastic-plastic
properties from a power-law hardening bulk specimen materials with one simple spherical indentation
impression test.

In order to verify the reliability of the reverse analysis, we have simulated about a large range of
materials that essentially cover all engineering materials, using ABAQUS(6.91) program. Then, we
could obtained the fitting functions and plastic parameters from the numerical analysis results. Next,
through the procedure of reverse analysis we can obtain the yield stress and power-law exponent.

Finally, obtain good agreement between the result from reverse analysis and initial input data from
experiment.
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1. Introduction

Instrumented spherical indentation is widely used to probe the elastic and plastic properties of
engineering materials. Because, in contrast with conical indentation the spherical indentation is more
simply to approach the target value which just using one simple impression test can get fairly accurate
elastic—plastic properties of bulk specimen. During the experiment, a rigid indenter penetrates normally
into a homogeneous solid (Fig.1(a)), and the indentation load P, displacement &, are continuously
recorded during loading and unloading(In this paper, we just consider the loading part, ignore the
unloading part)(Fig. 1(b)). Denoting the specimen Young’s modulus by £ and yield stress by o¢,, without
losing generality, the uniaxial stress—strain (o —e) curve of a stress—free solid can be expressed in a
power-law form Eq. (1):
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o= Ee for egay/E and o= Re" for eZay/E (1)

Where n is the work-hardening exponent, for most ductile metals and alloys n is between 0.1 and 0.5.
Where R=0,(E/c,)" is the work-hardening rate. In addition, the Poisson’s ratio regarded as a less

affective factor, therefor, fix the value as v = 0.3 to all engineering materials during indentation analysis.

a A b — oA C
Or
=9
P Spherical '§ Loading
indenter = P
Deformed % frex E
surface § Unloading
= E
a N > >
Original . ) R &p ‘ & &
surface O O "l

Displacement,, &
Fig. 1. (a) Spherical indentation (b) Typical indentation load-depth (c) The uniaxial stress-strain
with bulk specimen curves curve

2. Dimensional analysis

Based on the new definition of representative strain[l] that define representative strain to be the
plastic strain, for uniaxial loading(Fig. 1(c)):
e=¢e, tep=e, tep 2)
The presentative strain e, is a function of §/r. In order to, close to that of the Berkovich indenter
and cube indenter, we choose two indentation depths &,/r=0.13 and §,/r = 0.3 respectively[6]. These

values are adequately deep to overcome the strain gradient effect[7]. Correspondingly, the representative

stress is:

opler) =0, [U—Ey< Uﬁfgﬂ) +ep))” 3
Dimensional analysis leads to: B
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Where, P, and P, are the indentation loads, sg)and e(,?are the representative strains corresponding

with &,/r=0.13 and 6,/r= 0.3 respectively. Where, £= E/(1—1*) is the plane strain modulus. The

dimensionless functional forms will be determined by fitting the numerical results. In this paper, we
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assume the value of F is already known. Therefor, we can obtain the elastic-plastic properties (o,, n)

from Egs. (4) and (5).

Y

3. Forward analysis

In this paper, the finite element simulation were performed using ABAQUS(6.9-1). The indenter is
assumed rigid and the specimen is semi-infinite. The friction coefficient was taken to be 0.1 and as
mentioned before, the Poisson’s ratio fixed as 0.3. In the forward analysis, the parameters are varied
over a large range to cover essentially all engineering materials, with Elo » from 3 to 3000 and n from
0.1 to 05. As mentioned before, owing to the value of elastic modulus is already known, therefor, only
the loading curve is needed for measuring the plastic parameters in this paper.

Representative load-displacement curves obtained from FEM analysis are given in Fig. 2. The Fig. 2.

shows the curves for £/c, =60 with different n.
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Fig .2. Normalized indentation load-depth curves Fig .3. The flow chart of reverse analysis

4. Reverse analysis

For a given spherical indentation test with ¢,,./r=0.3, C, and C, can be measured from
experiment. Then reverse analysis based on equations (4) and (5) to solve the plastic properties (o, n).

Fig. 3 is the flow chart of reverse analysis.
5. Conclusion

Spherical indentation has the potential for measuring the elastic—plastic properties of bulk materials by
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just using one simple impression test, and it work well for a large range of materials. For the wide
range of material properties investigated in this paper, the error between reverse analysis result and
original input data less than 109 in most cases. Therefor, the reverse analysis have fairly accuracy for

measuring the material properties.
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