Perpendicular Magnetic Anisotropy of CoFeB/Pd Multilayers

Jong Ho Jung* Seong-Rae Lee and Sang Ho Lim

Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea

Magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy (PMA) have the important advantage of a smaller critical current density for current induced magnetization switching (CIMS) over MTJs with an in-plane anisotropy (in-plane MTJs). This is because the current-induced spin transfer torque (STT) in the in-plane MTJs must overcome the large additional 2π Ms factor that arises from the demagnetizing field of a magnetic thin film [1]. Since the CoFeB/MgO/CoFeB MTJs were shown to have large values of TMR, and most of the results were observed to be in the in-plane geometry, it would be highly desirable for the perpendicular MTJs structure to contain a CoFeB layer. In this study, an effort is made in this direction by investigating CoFeB/Pd multilayer system.

All the layers were deposited using a magnetron sputtering system that had two separate chambers with differentbase pressures of 1×10^{-8} Torr and 2×10^{-9} Torr. The M-H hysteresis loops, which are mainly used to characterize the PMA properties, were measured with a vibrating sample magnetometer at room temperature.

The effects of *N* were investigated and the results are shown in Figs. 1(a) and (b). The multilayer structure is shown in the inset of Fig. 1(a). The m-H hysteresis loops measured under the perpendicular applied field, shown in Fig. 1(a), indicate that all the samples have a good PMA. It can be seen in Fig. 1(b) that the coercivity (H_c) remains nearly constant up to N=12 and is followed by a steep decrease at N=20. The results for the two critical fields, the saturation field (H_s) and the nucleation field (or switching field) (H_n), are also shown in the lower panel of Fig. 1(b), together with their definition in the inset. The value of H_s increases monotonically from 114 Oe to 1360 Oe, as *N* increases from 3 to 20. On the other hand, the value of H_n is nearly independent of *N* in the low *N* range ($N=3\sim9$). In this range, the value of H_n is negative. However, H_n is nearly zero (at N=12) or even positive at the larger *N* values. At the largest *N* value (N=20), for example, the value of H_n is quite high (+390 Oe), indicating that the irreversible switching starts to occur even though a large value of H_{ext} is applied in the same (positive) direction. The value of *m* decreases quite steeply at H_n and it approaches zero at the remanent state. This behavior, which has been observed in the past, is explained by the formation of multi-domains with the PMA at large *N* values and the motion of the domain walls [2]. This behavior is also confirmed by an MFM image for the N=20 sample measured at the remanent state, as shown in the inset of Fig. 1(a).

References

- [1] S. Mangin et al., Nat. Mater. 5, 210 (2006).
- [2] B. Kaplan et al., J. Magn. Magn. Mater. 128, 111 (1993).

Figure 1. (a) The *m*-*H* hysteresis loops of the CoFeB/Pd multilayers with different *N* values ($N=3\sim20$). The insets show the investigated multilayer structure and an MFM image for the N=20 multilayer at the remanent state.

(b) The three characteristic fields (the coercivity (H_c) , the saturation field (H_s) , and the nucleation field (H_n)) as a function of *N*. Shown in the inset is the definition of H_s and H_n .