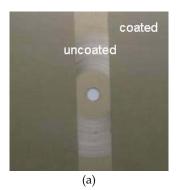
졸-겔 코팅법에 의한 티타늄과 스테인리스표면위의 무기질 내스크래치 보호막

Pure inorganic scratch resistive layer on the titanium and the stainless steel surfaces by a sol-gel coating method

김호형^a, 김균탁^a, 이흥렬^a, 황태진^{a*} a*한국생산기술연구원 생산기반기술연구본부 열·표면기술연구부 인천시 연수구 송도동 7-47 (E-mail: greathtj@kitech.re.kr)


초 록: 티타늄과 스테인리스 기판위에 졸-겔 코팅법으로 무기질 보호막을 형성하였고 기계적 특성을 테스트 하였다. 무기질 보호막은 금속 표면위에 졸-겔 코팅용액을 스프레이 코팅하여 제작하였다. 티타늄과 스테인리스 기판위에 적용한 무기질 보호막은 현저한 내스크래치성 향상을 보였다. 또한 실리카 나노입자의 첨가에 따른 무기질 보호막의 경도향상을 보였다. 그러나 실리카 나노입자가 2 wt% 이상 첨가됨에 따라 보호막의 경도가 감소함을 알 수 있었다.

1.서론

휴대용 단말기가 다양하고 편리한 기능을 수행하는 휴대형 멀티미디어 기기로 진화함에 따라 그 케이스에 있어서도 역시 슬림하면서도 고강도, 고성형성을 각춘 금속소재가 요구되고 있다. 이런 케이스의 소재로서 티타늄과 스테인리스 같은 금속이 그 대상이 된다. 특히 휴대용 단말기 케이스는 높은 내스크래치 특성이 요구된다. 따라서 내스크래치 특성을 향상시키기 위한 표면처리방법은 지속적으로 연구되고 있다{1-4}. 본 연구에서는 금속 케이스의 높은 내스크래치 특성을 얻기 위한 방법으로 졸-겔 공정을 통한 실리카 보호막코팅 방법을 보이고자 한다.

2.본론

본 연구에서는 티타늄과 스테인리스 기판위에 졸-곌 코팅법으로 무기질 보호막을 형성하였고 기계적 특성을 테스트 하였다. 무기질 보호막은 금속 표면위에 졸-겔 코팅용액을 스프레이 코팅하여 제작하였다. 코팅용액은 tetraethoxysilane(TEOS), methlytriethoxysilane(MTES), 에탄올과 다른 농도의 콜로이드 실리카 나노입자(1, 2, 3wt%)를 혼합하여 가수분해반응과 축중합반응으로 합성하였다.

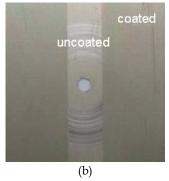
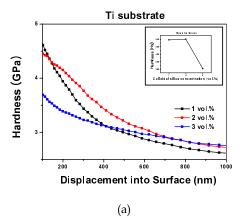



Fig.1 Scratch test results for a) the titanium and b) the stainless steel plates.

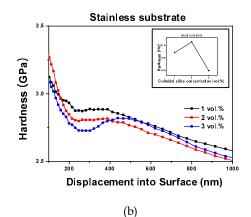


Fig. 2 Film hardness for a) the titanium and b) the stainless steel plates.

3. 결론

티타늄과 스테인리스 기판위의 무기질 보호막을 적용함으로써 현저한 내스크래치성 향상을 보였다(Fig. 1). 또한 실리카 나노입자의 첨가함에 따라 무기질 보호막의 경도 향상을 보였다. 그러나 실리카 나노입자가 2 wt% 이상 첨가됨에 따라 보호막의 경도가 감소함을 알 수 있었다(Fig. 2). 그리고 본 연구에서는 양산분야에서 자주 사용하는 스프레이코팅 방법을 통한 실리카 보호막을 형성하여 휴대용 단말기 생산라인에 쉽게 적용할 수 있음을 확인하였다.

참고문헌

- 1. F.Feil, W.Fürbeth, M.Schütze, Electrochimica Acta, 54 (2009) 2478.
- 2. D.Pech, P.Steyer, J.-P.Millet, Corrosion Science, 50 (2008) 1492.
- 3. J.Ballarre, D.A.López, A.L.Cavalieri, Thin Solid Films, 516 (2008) 1082.
- 4. H.K.Schmidt, Journal of Sol-Gel Science and Technology, 1 (1994) 217.