TF-P097

THz Characterization of Ferroelectric BSTO Thin Film by THz Time-Domain Spectroscopy

<u>Seung Beom Kang</u>¹, Min Hwan Kwak¹, Dae Won Kang^{1,2}, Sungil Kim¹, Se Young Jeong^{1,3}, Han Cheol Ryu¹, Dong Chul Chung^{1,4}, Sang Kuk Choi¹, Mun Cheol Paek¹, Kwang Yong Kang¹

¹THz device Research Team, IT Convergence & Components Laboratory, Electronics and Telecommunications Research Institute

²Department of Material Engineering, Hanbat National University, San 16-1, Duckmyoung-Dong, Yuseong-Gu, Daejeon, 305-719, Korea

³School of Nano Science and Technology, Chungnam University, Daejeon, 305-764, Korea ⁴School of Information&Computer, Woosuk University, Wanju-Gun, Jeollabuk-Do, 565-701, Korea

Terahertz time-domain spectroscopy(THz-TDS) has been used to characterize the optical and dielectric properties of a ferroelectric $Ba_{0.6}Sr_{0.4}TiO_3$ thin film in THz frequency range. The $Ba_{0.6}Sr_{0.4}TiO_3$ film was deposited on (001)MgO substrate by pulsed laser deposition with a KrF(λ =248 nm) excimer laser in 140 mTorr of oxygen pressure at a substrate temperature of $800^{\circ}C$. The thickness and structure of $Ba_{0.6}Sr_{0.4}TiO_3$ thin film was investigated by a cross-section scanning electron microscope(SEM) and X-ray diffractometer(XRD). The absorption coefficient, complex refractive index, and complex dielectric constants were measured in the frequency range of 0.3 to 3 THz.