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1. Introduction
During martensitic transformation, many forms of carbides can be found in a hardened structure consisting of 

tetragonal martensite and retained austenite, high-carbon steels. Those carbides are ε-carbide, θ-carbide (cementite), 
and x-carbide (Hägg carbide).  Since the importance of quality of final products, it is necessary to understand their 
thermodynamics as well as magnetic properties. However, the controversial studies have been done on the structure of 
ε-carbide Fe3C. The ε-carbide was proposed initially by Jack [1], based on the similarity of the X-ray diffraction 
patterns found in Fe3N. The initially suggested crystal structure of ε-carbide was hexagonal close packed (hcp) 
structure with the lattice parameters, α=2.73 Å, c=4.33 Å, and c/α=1.58. However, Nagakura[2] studied the crystal 
structure by using the electron diffraction to reveal that the structure of ε-carbide should be in-plane doubled hcp 
structure with the lattice parameters, α=√3 ah=4.767 Å and c=ch=4.354 Å. The possible Fe2C stoichiometry was 
proposed by additional carbon occupation on the hexagonal lattice. The alternative study by Barton and Gale[3] 
claimed the structure ε-carbide being monoclinic, similar with the hcp structure, with the lattice paratmers, a=b=2.794 
Å, c=4.360 Å, and γ=120.92o if one assume the formula Fe2C. In 1983, Dirand and Afqir[4] confirmed by using a 
series of X-ray diffraction measurements on iron carbides, that the Nagakura's suggestion was correct: the space group 
of the ε-carbide structure is P6322, which is the half group of P63/mmc, which is the hcp structure what previously 
considered structure.

On theoretical side, Faraoun et al.[5] studied the crystallin, electronic and magnetic structures of several carbides, 
but no calculation was done on ε-carbide. Very recently, Lv et al.[6] investigated the structural stability, electronic, 
and magnetic propertis of Fe2C carbides by using a plane-wave-based-pseudo-potential method. However, the claims 
of Lv et al. are confusing on considering the crystal structure of ε-carbides: they claimed that they took the space 
group P63/mmc, with the half lattice parameter of ah, which generates the unphysically small interatomic distances, 
i.e., smaller than the atomic radius of iron atom. Unexpectedly, the calculated results by Lv et al. are in reasonable 
value ranges. Hence, it is required to reexamine the calculations in terms of a highly precise first-principles the 
all-electron total-energy full-potential linearized augmented plane-wave (FLAPW) method[7,8]. Here we tried to 
obtain the electronic structures and magnetism of the proposed hexagonal structure by Nagakura[3].

2. Computational Method
We adapt the crystal structure of ε-carbide being proposed by Nagakura[3] and confirmed later by Dirand and 

Afqir[4]. The Kohn-Sham equation[9] was solved self-consistently in terms of the FLAPW method  as embodied in 
the QMD-FLAPW code within the generalized gradient approximation (GGA)[10] to the exchange-correlation 
potential. The LAPW basis set were expanded by plane wave cutoff of 22 Ry. Lattice harmonics with l≤10 were 
employed to expand the charge density, potential, and wave functions inside each muffin-tin (MT) sphere of radii of 
2.15 a.u. for Fe atoms and 1.35 a.u. for C atoms. The core electrons are treated fully relativistically. The star-function 

IV-3



- 140 -

cutoff of 260 Ry. was employed for depicting the charge density and potential in the interstitial region. Integrations 
inside the 3 dimensional (3D) Brillouin zone (BZ) were performed by improved tetrahedron method on a 13×13×13 
mesh, which corresponds to 84 k-points inside the irreducible wedge of the 3D BZ. Self-consistency was assumed 
when the difference between input and output charge (spin) density was less than 1.0×10-5 electrons/a.u.3 Lattice 
constants were optimized and the internal atomic coordinates were relaxed by using the total-energy and the atomic 
formce minimization [11], which we assume the force zero when the atomic force is less than 2 mRy./a.u.

              

(a)  (b)
Fig. 1. Multistep lattice constants optimization of (a) Fe3C and (b) Fe2C.

3. Results and Discussions
Fig. 1 shows the results of multistep lattice constants optimization of (a) Fe3C and (b) Fe2C. The optimized lattice 

constants of Fe3C were calculated to be α=4.677 Å and c/α=1.080, while those of Fe2C were evaluated to be α=4.691 Å and 
c/α=0.960, fatter and shorter hexagon than those of Fe3C. These facts imply the possiblity that ε-carbides of non-integral 
stoichiometry will be stabilized not only by thermodynamic conditions, but also by mutual stress energy balance between the 
Fe3C and Fe2C phases. It is considered that the phase transition from the hexagonal ε-carbide to the orthorhombic η-carbide 
by the lattice mismatch between the Fe3C and Fe2C phases. The calculated local magnetic moment of the Fe atom in Fe3C 
was 2.397 µB, while that in Fe2C was 1.72 µB. The total magnetization of Fe3C was calculated to be 1.68 T, while that of 
Fe2C was calculated to be 1.32 T. The strong reduction of the local Fe magnetic moment and the corresponding reduction in 
the total magnetization of Fe2C are thought to be originated by the strong Fe-C bonding, in the Fe2C phase.

4. Conclusions
We reexamined the first-principles calculation of ε-carbide in both the Fe3C and Fe2C phases by using the 

all-electron total-energy FLAPW method based on the GGA. We found that the hexagonal crystal of Fe2C is fatter and 
shorter than that of Fe3C. Due to the stronger Fe-C bonding in Fe2C than in Fe3C, the local magnetic moment of Fe 
atom and the total magnetization of Fe2C are reduced strongly.
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