The Fabrication of a Single-Phase Fe₃O₄ Film on W(110) Using a Co-Deposition Method

Byeong-Gyu Park*, Jae-Young Kim¹, Jae-Hoon Park¹, Hangil Lee²

Pohang Accelerator Laboratory, Pohang University of Science and Technology ¹Department of Physics and Pohang Accelerator Laboratory, Pohang University of Science and Technology ²Department of Chemistry, Sookmyung Women's University

We report on the growth of single-phase magnetite (Fe₃O₄) thin film n W(110) substrate by using the co-deposition method of Fe and oxygen as we control the substrate temperature. Furthermore, we confirmed the formation of various Fe-oxide films at various annealing temperature after the fabrication of magnetic (Fe₃O₄) thin film. The characterization of magnetic properties was performed by using soft X-ray adsorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). The O K-edge and Fe $L_{2.3}$ -edge XAS spectra reveal that the couplings of the O 2p with Fe 3d orbitals highly rely on the growth processes. The XMCD data of well-characterized thin films exhibit characteristic contributions from Fe³⁺ ions in a tetrahedral site(A-site) and Fe²⁺ and Fe³⁺ ions in octahedral sites(B-sites) and shows some different spectral features to those of the Fe\$_{3}SO\$_{4}\$ single crystal. The annealing-temperature dependence of the XMCD line-shapes and the Oxygen K-edge spectra show the change of the phase and magnetic character of Fe oxide films. These investigations demonstrate the experimental conditions for controlled growth of magnetite (Fe₃O₄) thin film on W(110) substrate and suggest that Fe₃O₄ might be a promising spintronics materials for future technology.