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1. Introduction
A synthetic antiferromagnet (SAF) is a tri-layer structure composed of two ferromagnets (FMs) separated by a 

normal metal (NM, typically thin Ru layer). The two FMs are exchange coupled across the NM whose thickness is 
adjusted to produce an antiferromagnetic coupling due to the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction. 
The SAF is also used as a free layer structure in toggle-mode magnetic random access memory (MRAM) [1] and 
spin-transfer torque (STT) MRAM [2, 3]. In comparison to a single FM, the SAF as a free layer has advantages for the 
STT MRAM [2, 3]; the enhanced thermal stability of stored magnetic information due to the increased magnetic 
volume, and the reduced switching current density possibly due to the reduced effective magnetization.

In order to investigate the possibility of SAF as high frequency microwave devices, it is important to theoretically 
study the base FMR frequency at no external bias for a given SAF structure. An analytical solution of the FMR 
frequency in unpatterned SAF structures has been already proposed [10-12]. However, there is no report on the 
analytical solution of the FMR frequency in SAF structures patterned into submicrometer scale where the 
magnetostatic dipolar coupling between two FMs cannot be ignored in determining the FMR frequency. In this work, 
we derive the analytical equation of the FMR frequency in patterned SAF structure when I = 0 and H < HSF (spin-flop 
field). The theoretical result is verified by comparing to the macrospin model. Since the patterned SAF is used in most 
applications, our result can provide an important guideline to design and to interpret experiments utilizing the SAF 
structure.

2. Theory and Model
Fig. 1(a) shows the schematic of the patterned SAF structure. Here we focus on the case where the external field is 

smaller than the spin-flop field above which the magnetizations of two FMs are deviated from the perfectly 

antiparallel alignment. The equation of motion of magnetization iM  is described by the Landau-Lifshitz-Gilbert 

(LLG) equation;

,
t

MM
M

HM
t

M i
i

i
ii

i

∂
∂

×+×−=
∂

∂ αγ
(1)

Total fields acting on the free layer 1 (FM1) and the free layer 2 (FM2) are given by
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where 0k
iH  is the crystalline anisotropy field of the FMi, M1

z = +M1, M2
z =–M2, and M1 (M2) is the saturation 

magnetization of FM1 (FM2) (|M1
x|, |M1

y| << M1, |M2
x|, |M2

y| << M2). The coefficients λ and N are given by 
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where λi
RKKY = Jex/(Mi

2di), Jex is the RKKY exchange energy through the Ru layer, di is the thickness of FMi, Nij
k is 

the k-component of the demagnetization factor corresponding to the magnetostatic field on the target FMj originating 
from the source FMi where k = x, y, and z, Ni

k = Nii
k, and Hext is the external field applied along the –z-axis. Ni

x + Ni
y 

+ Ni
z = 4π in the c.g.s. unit. The Nij

k varies with varying geometric variables (L, W, tF1, tF2, and tS) of the sample and its 
formula can be found in the ref. [13].

The magnetization motion in the thin-film geometry is elliptical precession around the z-axis with Miy = Aicos(ωt), 
Mi

x = –Bisin(ωt).
Then, one finds the FMR frequency f±,
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Here, f+ is the FMR frequency of the acoustic mode whereas f– is the FMR frequency of the optic mode.
To verify the theoretical prediction, we perform numerical simulations using the macrospin model. In the model, 

we solve the LLG equation with a small thermal fluctuation field (temperature = 1K) to keep the precession motion of 
magnetizations. Inset of Fig. 1(b) shows the time evolution of y-component of the magnetization, obtained for a SAF 

sample with L = 120 nm, W = 60 nm, tF1 = tF2 = 2.5 nm, tS = 1.0 nm, Jex = -0.1 erg/cm2, 00
21
kk HH = = 10 Oe, and M1 = 

M2 = 1000 emu/cm3. Fig. 1(b) shows the Fourier spectrum of the data in the inset of Fig. 1(b). The Fourier analysis 
reveals that there are two peak frequencies and thus two modes. A lower frequency peak corresponds to the acoustic 
mode whereas a higher one corresponds to the optic mode.

3. Results and Discussions
In Fig. 2, we show possible strategies of choosing the geometric and magnetic parameters in order to get a higher 

FMR frequency in a patterned SAF structure. Here, we have tested effects of i) the aspect ratio (= L/W) of the sample, 
ii) the thickness asymmetry (= tF1/tF2), and iii) the saturation magnetization (MS = M1 = M2). The following parameters 
are used unless specified. The sum of the thicknesses of the free layer 1 (tF1) and free layer 2 (tF2) is fixed at 5 nm. The 
surface area (= the product of the length (L) by the width (W)) is 7200 nm2, and the thickness of Ru layer (tS) is 1 nm. 

The magnetic parameters are; the crystalline anisotropy field 00
21
kk HH = = 10 Oe, the damping constant α = 0.01 in 

both FMs, and the RKKY exchange constant Jex = -0.1 erg/cm2. The external magnetic field is assumed to be zero.
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Firstly, we show the dependence of FMR frequencies on the aspect ratio of the sample (Fig. 2(a)). The FMR 
frequencies of both modes increase with the aspect ratio. It is because the effective anisotropy field k

iH  including the 
crystalline and shape anisotropy fields increases with increasing the aspect ratio. In this case, the FMR frequency of 
the optic mode at L/W = 3.125 is about 14.1 GHz, which is much higher than the FMR frequency of the single layer 
with the same aspect ratio and the thickness of 2.5 nm. Secondly, we vary the thicknesses of each free layer whereas 
the sum of the thicknesses of both layers is fixed at 5 nm (Fig. 2(b)).  The FMR frequencies increase as the thicknesses 
of two FMs become more asymmetric. It may be caused by the fact that as the thicknesses become more asymmetric, 
a thinner layer experiences a stronger coupling field consisting of the RKKY exchange field and the stray field from 
the other layer. Thirdly, we investigate the effect of the saturation magnetization MS on the FMR frequency (Fig. 2(c)). 
The MS is the same for both layers, and varied from 600 to 1500 emu/cm3. The FMR frequencies of both modes 
linearly increase with MS. Note that Hk, Hd , and the dipolar coupling field are linearly proportional to MS whereas λRKKY 
is inversely proportional to MS

2. The linear dependence of the FMR frequency on MS indicates that the Hk, Hd, and 
dipolar coupling field are more dominant than the exchange coupling field in determining the FMR frequency when 
the pattern size is small.
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Fig. 1. (a) The illustration of SAF structure and the coordinate system. L and W are the length and the width of a 
patterned SAF film, respectively. tF1, tF2, and tS are the thickness of free layer 1, free layer 2, and spacer (= Ru 
layer), respectively. (b) The power spectrum obtained from time evolution of the normalized y-component of 
magnetization shown in the inset of Fig. (b). A lower (higher) peak denotes the FMR frequency of acoustic 
(optic) mode. Data in the inset were obtained for a SAF sample with L = 120 nm, W = 60 nm, tF1 = tF2 = 2.5 

nm, tS = 1.0 nm, Jex = -0.1 erg/cm2, 00
21
kk HH = = 10 Oe, and M1 = M2 = 1000 emu/cm3.

Fig. 2. (a) The FMR frequencies as a function of the aspect ratio (L/W). (b) The FMR frequencies as a function of the 
thickness ratio (= tF1/tF2) in the log-scale. (c) The FMR frequency as a function of the saturation magnetization 
of both FMs.




