극 자외선 리소그래피 마스크 용 Ag 도핑된 ZnO 흡수층의 광학 상수 결정

강희영, 남현정, 황보창권 인하대학교 물리학과 lunakkk@paran.com

극 자외선 리소그래피를 위한 binary 마스크는 13.5-nm 파장의 빛을 반사시키는 반사층과 패턴 적합도, 마스크 생산량, 결점 검사의 효율성, 그리고 결점 조정 과정과 직접적으로 관련되어 있는 흡수층으로 구성되어 있다⁽¹⁾.
최근 연구 결과들에서 TaN은 13.5-nm 파장의 빛을 흡수하기 위한 흡수층 물질로 사용하고 있다고 보고되고 있다. Binary 마스크의 경우 극자외선 영역에서 사용되기 위해 반사층과 흡수층의 반사율 비가 0.1 이하를 만족하여야 하며, 이 경우 TaN 박막의 두께가 80 nm 이상일 때 이미지 대조비를 상승시켜 회로의 패턴을 잘 구현 할 수 있다. 그러나 흡수층의 두께가 증가하면 그림자 효과를 유발하기 때문에 결과적으로 노광 공정 후 패턴의 형 상이 한쪽으로 치우치거나 이동하게 된다⁽²⁾. Zinc Oxide (ZnO)는 전도성 산화물로써 투명하고, 비결정성을 가지며, 플라즈마 에칭 공정이 가능하므로 흡수층 물질로 사용하기 적합하다⁽³⁾. 그러나 13.5 nm 파장에서 그 광학상수는 TaN과 거의 비슷하기 때문에 흡수층의 두께를 줄이기 위해서는 13.5-nm 파장에서 흡수가 가장 큰 물질인 은(Ag)을 도핑하여 물질의 흡수를 증가시키도록 하였다. 그러므로 13.5 nm 파장에서 다양한 ZnO 박막의 광학상수를 결정하는 것은 매우 중요하다.

본 연구에서는 RF 마그네트론 스퍼터링 방법을 사용하여 ZnO 박막을 Ag의 도핑 농도를 다르게 하여 C 기판과 Si 웨이퍼 상에 제작하였고, 이를 러더퍼드 후방산란 분석법과 X-선 반사율 측정 장비를 사용 하여 13.5 nm 에서의 광학상수(n, k)를 결정하였다. 이는 러더퍼드 후방산란 분석법(RBS)으로 샘플의 areal density를 X-선 반사율 측정 장치(XRR)에서는 박막의 두께를 측정함으로 각 샘플 박막의 원자 밀도가 결정되고, 이와 함께 파장에 의존하는 물질 원소의 scattering form factor를 이용하면 광학상수 를 계산할 수 있음으로 가능하다⁽⁴⁾. 또한 XRR 측정 값의 임계각으로부터 광학상수를 구할 수 있고 이 를 RBS방법과 비교, 분석하였다.

그림 1 Ag 도핑 농도에 따른 ZnO 박막의 (a)러더퍼드 후방산란 스펙트럼과 (b) X-선 반사율 그래프

한국광학회 2009년도 동계학술대회 논문집 (2009. 2. 12~13)

그림 1(a)는 C 기판 위에 증착한 다양한 Ag 도핑 농도를 가지는 ZnO 박막의 러더퍼드 후방산란 분광 기의 스펙트럼이다. 이 박막들의 RBS 측정은 2MeV 4He+으로 입사각도 0°, 탐지각도(θ) 10°, 그리고 10µC의 조사량을 가지고 이루어졌다. 그림 1(b)는 Si 웨이퍼 위에 증착된 다양한 Ag 도핑 농도를 가지 는 ZnO 박막의 두께와 임계각 결정을 위하여 측정한 X-선 반사율 그래프이다. 이 때 CuK_a(λ=0.154 nm) 광원을 이용하여 40V, 20mA의 가속 전압과 전류 조건으로 측정하였고, X'Pert Reflectivity 프로그 램을 사용하여 두께와 임계각을 결정하였다. 두 측정 결과로부터 다양한 ZnO 박막들의 전체 원자 밀도 를 결정하고, 13.5 nm와 0.154 nm 에서의 Zn, O와 Ag의 scattering form factor를 이용하여 표 1과 같 이 광학상수를 결정하였다.

Material	Method	Density [g/cm ³]	n=1-8	k=β	n (bulk) ±∆n	k (bulk) $\pm \Delta k$
ZnO	Bulk	5.675	0.96322	0.044963	-	-
	RBS	4.98 ±4.00%	0.96617 ±0.13%	0.039529 ±4.00%	0.15%	6.43%
	XRR	5.62 ±1.23%	0.96540 ±0.04%	0.044457 ±1.24%	0.11%	0.57%
ZnO:Ag (25w%)	Bulk	6.88	0.94499	0.05357	-	-
	RBS	5.74 ±3.55%	0.95663 ±0.16%	0.045287 ±3.55%	1.23%	15.46%
	XRR	6.21 ±1.19%	0.97153 ±0.03%	0.048084 ±1.19%	2.81%	10.24%
ZnO:Ag (50w%)	Bulk	8.09	0.92677	0.062189	-	-
	RBS	5.59 ±4.37%	0.95275 ±0.22%	0.043661 ±4.37%	2.80%	29.79%
	XRR	6.35 ±1.18%	0.96146 ±0.05%	0.048868 ±1.18%	3.74%	21.42%
ZnO:Ag (75w%)	Bulk	9.29	0.90855	0.070787	-	-
	RBS	6.88 ±4.40%	0.93395 ±0.31%	0.053094 ±4.40%	2.80%	24.99%
	XRR	6.79 ±1.14%	0.94588 ±0.07%	0.051870 ±1.14%	4.11%	26.72%
AgOx	Bulk	10.5	0.89032	0.07939	-	-
	RBS	9.55 ±2.06%	0.89983 ±0.23%	0.072233 ±2.06%	0.53%	4.72%
	XRR	8.63 ±1.00%	0.90310 ±0.11%	0.068686 ±1.00%	0.71%	7.23%

표 1 13.5 nm 파장에서 Ag 도핑 농도에 따른 ZnO 박막들의 광학상수 (n, k)

그 결과 다양한 Ag 도핑 농도를 가지는 ZnO 박막들의 광학상수를 결정할 수 있으며, Ag 도핑 농도가 커질수록 박막의 광학상수는 증가하게 됨을 알 수 있다. 이를 통하여 13.5 nm 파장에서에서 여러 가지 혼합된 흡수층 박막의 정확한 광학상수를 알 수 있으므로 극자외선 리소그래피용 마스크 흡수 물질 연 구에 유용하게 이용될 것으로 판단된다.

[참고문헌]

1. S. Y. Lee, T. G. Kim, C. Y. Kim, I-Y. Kang, Y-C. Chung, and J. Ahn, "Combined absorber stack for optimization of the EUVL mask," Proc. SPIE **6151**, 61511Y (2006).

2. M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B **21**, 2701 (2003).

3. M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B **21**, 2701 (2003).

4. S.H.Jeong, D.-G.Yoo, D.Y.Kim, N.-E.Lee, J.-H.Boo, "Physical properties and etching characteristics of metal (Al, Ag, Li) doped ZnO films grown by RF magnetron sputtering," *ThinSolidFilms* **516**, 6598 (2008).

5. B.L. Henke, E.M. Gullikson, and J.C. Davis, *Atomic Data and Nuclear Data Tables* 54, 181 (1993).