Proceedings of the ITFE Summer Conference, August 27-29, 2009

Scheduling Computational Loads
in Single Level Tree Network

Run Cui’ S. Suresh™, and H. J. Kim"

Abstract

This paper is the introduction of our work on distributed load scheduling in single-level tree network. In this paper, we derive a new
calculation model in single-level tree network and show a closed-form formulation of the time for computation system.There are so many

examples of the application of this technology such as distributed database, biology computation on genus, grid computing, numerical computing,

video and audio signal processing, etc.

Keywords : Distributed, loads, scheduling, single-level tree, scheduling

I. Introduction

In recently 20 year, distributed network computation
is growing quite fast with the development ofthe
internet. As the information processing scaling in the
network is much larger than before, finishing the whole
computing work in a single computer is becoming much
harder then before. So the research of the load
distributed computation has been one ofmost important
work of the modern computer science. In this situation,
the research work of the distributed load scheduling is a
valuable pointer to the future work of the big amount of
information processing.

Il. Models and Notations
1. Single Level Tree

The single level tree network architecture which is
shown in Figure 1 is the model used in this paper.
Suppose there are m processors (P1, P-Pn) directly
connected to the root processor (Pp) with the links (Lo,
Li.. Lw). N is a very big value presented the total size
of send payloads to all the child nodes send payloads
the payload to be processed. The root processor (Po)
owns all the payloads before the start of the
computation and it can arbitrarily to all the child nodes
(P1, PyPy) at the same time. The fraction sent to
processor P; is presented by a; (i =0, 1---m), so the size
of the payload of - processor Pi is aN. The root

H+2A 0 2009 8] 042

XE2AZ . 20099 8¥ 20

*Multimedia and information security Lab Korea University

*xKorea Univsersity Multimedia and Information Security
WA XX, E-mail @ khj~@korea.ac.kr

processor can begin computing at the beginning time
because it owns all the payloads. The child processor P
can begin to compute only after it gets all the payloads
aN and there is no time gap between communication
and computation process.

Figure 1 A single level tree

As @ is fraction of the payloads we get the equation
below:

iai =1 (1)
i=0

3 iN=N
2 ®

2. Collective Communication Model

The collective communication model is used in this
paper. In this kind of model, the root processor Py can
send the payloads to its child processors simultaneously
while it is computing, which means Py can send the
load fractions (N, a:N -+ amN) to child processors(P,
Ps-Pn) at the same time. Suppose Ti is total time for
processor P; to finish its task. To child processors Ti is
consisted by two parts: Communication time Ticomm
and computing time Ticomp. But to Py, as it does not

need to receive the payload from other processors, Ty is

-131-

2009 BZSMEH B20i8 =2&(2009. 8. 27~29)

the total time used in computing. So Ti can be
presented as follows:

_ Tr(.)'ump,’_=0
]-‘l - comp comin
T’ +T,, Li#0 3)

3. Computing models

The communication Ticomm time is the sum of
constant start~up delay ©O.n and transmission time
which is in direct proportion to the size of the deferent
payload. We get the formulation below:

T,c()mm =Bem+ G,(CZIN),I =], 2, ., M 4)

Where G is the time taken to rcad unit data from the
buffer for processor Pi and aN is the size of the data
received by Pi.

In practical applications, the computation complexity is
nonlinear in problem size. In this paper, we consider
two cases! polynomial computation model and a mixed
model. Ai is the time for processor pitaken to process a
unit data. The computing time Ticompis the sum a

constant start-up delay ©, and the nonlinear
computation time as follows:
T = O+ Af (@N),i =0,1,....m "

Where f is a nonlinear function. In this paper, f(aN)
can be substituted by (aN)y or (aN)+log(a:N) in
different case. In normal case, the start-up header ©cm
and Oc¢cp are very small value compared with other parts
in the formulations and we always ignore them.

Now we get a computation model shown in figure 2.
From the processing model we can get the computing
model as follows:

Aof(aoN),i=0
TG (@) + ar@@N),i=1,..om @

T win = min(73),i = 0,1,...,m -

In this paper, we will ignore the start-up delay, O
and Ocp.

4. Notations and Definitions
Notations:
N: The total size of the processing payload.
m: Number of the child processors.
gi¢ Fractions of the processing load assigned to
processor Pi.
Ai: The computation time speed parameter for
processor Pi.
Gi- The communication time parameter for processor Pi.
Bm': A constant additive communication overhead
component that includes the sum of all delays

associated with the communication process.
O, A additive
component that includes the sum of all delays

constant computation overhead
associated with the communication process.

T Time for processor Pi to send the payload

T Time for processor Pi to computing the entire
assigned payload.

Definitions:

Ti: The total time for processor P; to finish its task,

including communication time and computing time.

Twin: The minimum processing time among T

P flaNA [t
[(aNa t
(oA |
(NG
. T(anA Tt
(ayOn
Fo {2 An | t

Figure 2 Processing time model

lll. Closed-Form Expression for Processing
Time

In this section, we will derive closed-form expression
for different models. As shown in the computing model,
POcan send load to the child processors simultaneously
at time t = 0. In divisible load theory, it has been
rigorously proved that for optimal processing time, all
the processing involved the computation of the
processing load must stop computing at the same time
instant. Associated with the computing model in figure

2. we can get the formulation below:

f(aoN)Ao= f(aN)Ai+(a:N)G,
i=12.,m (8)

£ A=t B Gi
Denoting /'~ 4 and M Zifor all i = 1, 2 m

Equation (8) can rewritten as!

F(@iN)+(@N)Bi- f (@oN)IT f, =0,

i=1,2...,m 9)
And solution of ¢ I = 0, 1=+ m) in equation set
consist of equation (2) and (8) is optimal solution for

load assignment.

1. Polynomial solution for aiN
In this case, f(aN)=(aiN)", so the computing model in

equation (9) can be rewritten as below:

-132-

Proceedings of the ITFE Summer Conference, August 27-29, 2009

(@NY +(aN)B: - (o)’ H f,.=0.

i=1,2.,m (10)
Some results and derivation comes from the previews
work, and the result for higher order is our new work
result for high speed processor case.
For y = 1
Equation (10) can be expressed as:

(@N)+ () - (aoN)}i[l f,=0

i=L2..m 1y

The solution of equation (9) can be written as
follows:

— : Bl
(+BTTS ()

(12)

For y = 2:
Equation (10) can be expressed as:

(@) + (aN)B: - (om]\f)zkr;[1 f,=0

i=12...m (13)

The solution of equation (13) is as follows:

B+ \/B,z + 4{;11 7 (aiN)’

aN = 2 (14)

Here the negative root is ignored. Using the method
introduced in reference [2], we can simple the solution
by removing the radical signs:

N B
aiN =~ (gfk) (O{ON)_E
= (rI £ (@oN)

B

AT @ as)

For y = 3
Equation (10) is as follows:

(@NY + (NP - (ogo}\ffkr'i=1 £,=0

ci=L2...m (16)

The significative root of equation (16) is:

(3)\)3
aiN =~ 3

(9}-1 FaNY +43 J4Bﬁ +27(}j} 7Ny

oI F@NY +3 \qus,‘ +2U([1 £) (V)"
tei ket (17)
21/33:/3

Using the same as before, we can get a simplified

+

solution as shown in equation (18):

aN = (kn] £ (N - b

CITALICTEY) L

2. Polynomial solution for aON

From the section 3.1.1, we get a solution of aiN for
order 1 to 3, now we can devote the final solution of a0
with the equations (2) and result of aiN. Substitute the
result to the equation (2), and for different case different
solution of a0 will be gotIn the previews work, order 1
and 2 have been got, now we mentioned them again to
show the approach of getting the solution of order 3.
That is the main distribution of our work.

For y=1:
After the substitution we get the equation below:
o+ 311 7o) -——F) ¥
1+ BT £ NaoN)] (19

And equation (21) can be written as:

1- A(m),(coN)™" = B(m), =0 20)

Where A(m); and B(m); are the expressions as

follows:
A(m), = —N—
”;(H fD @1
n BI
= (4B S)
B = —
1+ (I fp) (22)

=l k=l
Considering the expressions of A(m) and B(m), we
can see that A(m) is much bigger then B(m) because in
practice case N is a big value and fi is small. With this
condition we can simple. the following equation as we
do in section 3.1.1.

From equation (30) we get the solution for the case y=1:

__A(m),
L —B(m), (23)
For y=2:

-133-

2000 HESMLH 205 =28(2009. 8 27~29)

Using the same method we can get that:

(aoN)—A(m), — B(m), =0 (24)
And the root of this equation is:
(@oN) = A(m)z +B(m), (25)
Here, the new expression for A(m) and B(m) is as
follows:
A(m), = —
1+ 2
2q1fD)
m E
B(m)2 — i=1 2
1+Z(k]f 0" 27)
i=1 =
For y=3:
Equation result of formulation above can be rewntten as:
(CZON)_ - A(M)3((XON) - B(m)3 =0 (28)

Using the same method which we use to get the
approximate solution of «, and we can get the root

. A(m), + A(m)," +4B(m) ,

below:

2 (29)
I —
1+2(e fk)l/3 (30)
S B
= 3(TT 1)
B(m), = kel

i

l+i(

i=1

1f O (31)

k=

Now we can have got the solution for order 1 to 3.

3. Closed-form expression for processing time

As we show in computation model in figure 2, the
processing time for each child processor is the sum of
its computing time and communication time and for
processor Py, it equals to the processing time. From
equation (6),(7), combined with the condition that the
start—up delay, O.n, and ©, are all very small, these

small values will be ignored ,we can get the expression
of Ti:

Ao(croN)",i=0
Gi(aN)+ A(@N) ,i=1,..m (32

QOur target is to get the optimal processing time T in

i=

the single level tree computing model. In this case, all

the processing time of the child processors is equal to
the computing of processor Py, and then we can the
solution of Tmin as follows:

For order 1 and order 2, the solutions have been got
clearly. So now we focus on the order 3, substitute
equation (29) to (32):

T win = AO(“ON)3

B(m), 5
= Ao(A(m), +_A—(m_)3) (33)

4. Speed-up for the order 3 case

Now let us calculate the speed up of our formulation
to get a main image to the effort of case order 3. This
is a very important parameter to value the result of our
work and also it is a good mark for practice application.
In the discussion, we talk about the homogeneous case
which means that all the processors own same

conditions:
S eed up = normal
p - p Tmin
_ AoN
Ao(A(m), + 2y
A(m),
~(1+m)’ (34)

From the result of the speed-up, we can see that this
computation model has a very good effort to calculate
the distributed load.

IV . Conclusion

In our paper, we describe a new computation model
to the distributed load computation, and get a good
closed—form formulation of the model. From the
speed-up result, the effort of the model is really good
as the developing of the DLT theory. Also this work
has a good future as we can continuously find the
result of high order and get a generous result for all

the case.

[References]
{11 Bharadwaj, V., Ghose, D., and Mani, V. "Optimal
distributed
single-level networks with communication delays”,
IEEE Transactions on Parallel and Distributed
Systems, 5 (1994).
[2] Bharadwaj, V., Ghose, D, Mani, V., and Robertazzi,
"T. G. Scheduling Divisible Loads in Parallel and
Los Almitos, CA:' IEEE

sequencing and arrangement in

Distributed Systems”.

-134-

Proceedings of the ITFE Summer Conference, August 27-29, 2009

Computer Society Press, 1996.

(3] Stankovic, J. A. Spuri, M. Ramamritham, K. and
Buttazzo,G. C. "Deadline Scheduling for Real-Time
Systems: EDF and Related Algorithms.”, Boston:
Kluwer Academic Publishers, 1998.

[4] Suresh,S.Mani,V. and Omkar,S.N. "The effect of
start-up delays in scheduling divisiable loads on bu
networks: an alternate approach,” Compute Appl.
40(10), pp. 1545-1557

[6] HJKim and V.Mani, "Divisiable load scheduling in
single-level tree network in nonblocking mode of
xommunication”, Computers Math. Applic. 46(10/11),
pp. 1611-1623.

Run Cui

2008 BS in Computer and technology,
Harbin Institute of technology. 2008- for
Master and Doctor degree, Multimedia and
_ Information Security Lab, Korea University.
Distributed Load

) Research Interesting:

Computation

Email: cuirun@korea.ac.kr

Suresh Sundaram
1999, B.E in Electrical and Electronics
Engineering from Bharathiyar University,

Tamilnadu, India. 2001, M.E (Control and

Dynamics) in Aerospace Engineering, Indian
" Institute of Science, Bangalore, India. 2005,
"PhD in Engineering, Indian Institute of
Science, Bangalore, India. Research Interesting: Distributed Load
Computation, Machine Learning

E-mail: Sundaram.Suresh@sophia.inria.fr

Hyoung Joong Kim

1978, BS,, in Flectrical Engineering Seoul
National University. 1986, M.S., Control and
Instrumentation Engineering Seoul National
University. 1989, Ph.D, Control and

Instrumentation Engineering Seoul National

University. Research Interesting: Multimedia
Computing, Multimedia Security, Semantic Analysis, and
e-Learning applications.
E-mail: khj-@ korea.ac.kr

-135-

