Development of Preheat-free 800 MPa GMA Welding Consumable

800MPa급 무예열 GMA 용접재료 개발

  • 김희진 (한국생산기술연구원) ;
  • 서준석 (한국생산기술연구원 및 한양대학교) ;
  • 박형근 (한국생산기술연구원 및 한국기술교육대학교) ;
  • 박철규 (고려용접봉(주))
  • Published : 2009.11.26

Abstract

고강도강의 용접성은 저온균열 저항성으로 대변되는데, TMCP강과 HSLA강 등이 개발되면서 고강도강의 저온균열저항성이 크게 향상되어 무예열 용접성이 확보되었다. 그러나 용접재료 측면에서는 그에 상응하는 재료의 개발이 지연되어 용착금속부에서의 저온균열이 심각한 문제로 대두되고 있는 실정이다. 이러한 문제는 800 MPa급인 HY-100강재를 HSLA-100강으로 대체하는 과정에서 현실적인 문제로 제기 되었다. 즉 HSLA강은 용접 예열이 필요치 않았으나 기존의 용접재료, 즉 HY-100 강재에 사용하던 용접재료를 사용하게 되면 용착금속부에서 저온균열이 발생하여 용접예열을 생략할 수 없다는 판단에 이르게 되었던 것이다. 이에 본 연구의 목적은 HSLA-100강을 무예열 용접할 수 있는 GMA 용접와이어 개발하는 것이며, 구체적인 개발 목표는 무예열 용접조건에서 800 MPa 이상의 인장강도를 가지며 $-50^{\circ}C$에서의 충격인성이 50 J 이상인 GMA 용접와이어 개발하는 것이다. 이러한 용접재료를 합금설계함에 있어 무예열 용접성을 확보하기 위하여 용접재료의 탄소함량을 0.01% 수준으로 하고, 용착금속의 인장강도와 저온 충격치에 미치는 Mn과 Mo 함량의 영향을 검토하고 각각의 조성을 실험계획법으로 확정하였다. 그리고 확산성수소량에 따른 저온균열 발생 여부를 확인하여 무예열용접성을 확보하기 위해서는 확산성수소량이 3ml/100g 이하가 되어야 한다는 사실을 실험적으로 확인하였다. 그리고 이를 달성하기 위해서는 원자재인 와이어로드의 표면 품질이 중요하다는 사실도 확인할 수 있었다. 다음으로는 실험계획법에 의거하여 선정된 합금조성의 신뢰성을 검증하기 위하여 800kg 중량의 시제품을 생산하였으며, 생산된 시제품에 대해서는 실험계획법에서 사용한 Ar+5%CO2외에도 Ar+20%CO2를 적용하여 보호가스의 영향을 검토하였다. 검토 과정에서 Ar+20%CO2용으로 사용하기 위해서는 용접재료의 Si 및 Mn 함량이 상향조정되어야 함을 확인할 수 있었다. 그리고 탄소함량을 0.05% 수준으로 증가시키면 Mo 함량을 크게 저하시킬 수 있음도 확인할 수 있었다. 이러한 과정을 거쳐 개발된 GMA 용접재료는 무예열 용접조건에서 저온균열이 발생하지 않았으며, 인장강도는 830 MPa이었으며 $-50^{\circ}C$에서의 충격치는 90 J 이상이었다.

Keywords