Fabrication and Characterization the of Ex-Situ Processed MgB₂ Wires for Improved Critical Properties

C. M. Lee a , W. Kim a , D.-B. Kim b , J. H. Yi b , J. H. Lim a , J. Joo a ,*, B.-H. Jun b , C.-J. Kim b

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Korea b Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, Korea

The ex-situ processed MgB_2 wires were fabricated with C-doped MgB_2 powder as a precursor for enhancement of the core density and critical current density of the wires. The C-doped powder was prepared with Mg, B, and C powders by the in-situ technique, which was subsequently used for the C-doped MgB_2 wires by the ex-situ technique using the powder-in-tube method as a function of carbon content ($MgB_{2-x}C_x$: x=0, 0.01, and 0.03). In addition, we added additional Mg in the ex-situ process as a sintering agent. The phase formation, lattice change, and microstructure were characterized and their correlations with the T_c and J_c variations will be presented.

Keywords: carbon, critical properties, doping, ex-situ process, MgB₂

Acknowledgement

This research was supported by a grant (R-2006-1-248) from Electric Power Industry Technology Evaluation & Planning (ETEP), Republic of Korea.