Continuous Tube Forming and Filling Method for the Fabrication of MgB₂ Long Wires

K. C. Chung^a, Y. K. Kim^a, T. H. Kim^b, X. L. Wang^c, S. X. Dou^c

^a Korea Institute of Materials Science (KIMS), Changwon, Korea

^b KISWEL R&D Center, Changwon, Korea

^c Institute for Superconducting and Electronic Materials, Univ. of Wollongong, NSW2522, Australia

Long-length MgB₂ superconducting wires have been fabricated using the CTFF process. In this CTFF process, 14mm-wide sheath materials were supplied and continuously formed into the U-shape, and then the prepared MgB₂ powders were filled into the U-shaped sheath and made into the O-shape wires. Following was the cold drawing with the line speed of 30~100m/min, which has been conducted continuously to final wire's diameter of <1mm with a length more than 300m. To protect the MgB₂ powders from direct exposure to air, especially to humidity, atmosphere around the powder supplier was controlled. The sintering of thus prepared MgB₂ wires were performed from 600 to 1000°C in an hour with Ar/5%H₂ mixed gas and naturally cooled down to room temperature. The heating ramp rate was 500°C/hrs. The superconducting properties of MgB₂ wires were investigated using XRD, FE-SEM, and J_c(I_c) measurement and compared to MgB₂ wires made by Powder-In-Tube method. Also discussed are the choice of sheath materials for the better stabilization and winding performance for superconducting magnet applications.

Acknowledgement

This work was supported by a grant partially from the Global Partnership Program from the Korea Foundation for International Cooperation of Science & Technology (KICOS) in 2006(M60602000012) and partially from the energy and resource technology development program from the Korea Energy Management Corporation (KEMCO).