Low Cost Process for Fabrication of Silver Stabilizer Layer on Coated Conductor Using Organic Silver Complexes

J. B. Lee^a, M. H. Do^a, B. J. Kim^a, S. H. Moon^b, H. G. Lee^a,

^a Korea Polytechnic University, Siheung, GyeongGi-do Korea
^b SuNam Co. Ltd., Anyang, GyeongGi-do Korea
^c ISEM University of Wollongong, Wollongong NSW 2522 Australia

Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A continuous silver layer with dense microstructure, good surface coverage and proper thickness of 240 nm is obtained by multiple dip coating and heat treatment. The film heat treated at a relatively low temperatures of $200 \sim 500$ °C showed good mechanical adhesion and crystallography. The contact resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67 \times 10^{-13} \Omega m^2$.

Additional deposition of copper layer with the thickness of 20μ m was possible by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method in industrial production of coated conductor.

Keywords : Organic silver complexes, dip coating, coated conductor, silver stabilizer layer

J. H. Kim^c, S. X. Dou^c, G. W. Hong^{a, c}