Fabrication of the C-Doped MgB₂ Wires Using Mechanical Alloying and Combination of In-situ and *Ex-situ* Processes

S. M. Hwang^a, C. M. Lee^a, D.-B. Kim^b, J. H. Yi^b, J. H. Lim^a, J. Joo^{a,*}, B.-H. Jun^b, C.-J. Kim^b

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Korea ^b Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, Korea

Ex-situ processed C-doped MgB₂ wires were fabricated by two different methods such as mechanical alloying (MA) and combined process (CP) of in-situ and ex-situ. In the MA, the mixture of MgB₂ and 1 at% C powders was subjected to planetary ball milling for 0-100 h in Ar atmosphere. In the CP, on the other hand, in-situ processed C-doped MgB₂ powder was prepared with Mg, B, and C powders via compaction, sintering, and crushing. The precursor powders prepared by two methods were put into Fe tube and then drawn into wires using a conventional powder-in-tube technique.

The MA process of C-mixed MgB₂ reduced the particles/grains size and resulted in C-doping into MgB₂ after sintering, leading to improvement of the critical current density (J_c) in high magnetic field. The CP also gave rise to C-doping into MgB₂ and improved the J_c in high field. The phase formation, lattice change, and microstructure were correlated with the variations of J_c and T_c of the MgB₂ wires, which will be presented.

Keywords: Critical current density, Ex-situ, In-situ, Mechanical alloying, MgB₂

Acknowledgments

This research was supported by a grant (R-2006-1-248) from Electric Power Industry Technology Evaluation & Planning center (ETEP), Republic of Korea