Single Crystal Like MgB₂ Thin Film Grown by HPCVD

W. K. Seong¹, SangJun Oh², Jun-Ki Jung³, C. J. Kim⁴, W. N. Kang^{1,*}

¹ BK21 Physics Division and Department of Physics, Sungkyunkwon University, Suwon 440-746, Korea

² Material Research Team, National Fusion Research Institute, 52 Eoeun-dong, Yuseong,

Daejeon 305-333, Korea

³ Institute of Industrial Technology, Changwon National University, Changwon 641-773, Korea

⁴ Division of Nano & Advanced Materials Science and Engineering, Gyeongsang National University,

Jinju 660-701, Korea

We have grown single crystal like MgB₂ thin film by hybrid physical-chemical vapor deposition (HPCVD) technique. The micro structures of single crystal quality of MgB₂ thin film were observed transmission electron microscopy (TEM). TEM specimens were prepared of in-plane view and cross section by *in-situ* lift-out technique for focused ion beam (FIB). The crystallinity of MgB₂ thin film was investigated by selected area electron diffraction pattern (SAED) and two beam method. SAED pattern of the cross section shows the MgB₂ thin film without secondary phase. The MgB₂ thin film was not observed grain boundary that was confirmed by two beam bright filed images using TEM. As a function of temperature, the magnetization curve of MgB₂ thin film is similar to that observed for single crystal MgB₂. The field dependence of magnetization for MgB₂ thin film was shown very weak pinning behavior similar to that of MgB₂ single crystal. [Phys. Rev. B 65, 100510 (2002)].