P26

Enhanced $J_c(B)$ Behavior of MgB₂ Superconductor by Cellulose Acetate (CA) Doping

W. Kim^a, S. M. Hwang^a, C. M. Lee^a, K. Sung^a, G. C. Park^a, J. H. Lim^a, W.-N. Kang^b, J. Joo^{*,a}, C.-J. Kim^c

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Korea
^b BK21 Physics Division and Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi, Korea
^c Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, Korea

We fabricated the cellulose acetate (CA)-doped MgB₂ via an in-situ reaction process and investigated the effect of CA doping on the phase formation, microstructure, and critical properties. Mg powder was stoichiomatrically mixed with precursor powders consisting of B and $0\sim10$ wt% CA powders which had been processed by dissolution in an organic solvent, ultrasonic mixing, and vaporization. The mixed powders were pressed into pellets and subjected to heat-treatment at 900°C in Ar atmosphere.

Phase was identified by high resolution x-ray diffraction (XRD) and microstructure was observed by scanning electron microscopy (SEM). DC magnetization was measured by magnetic property measurement system (MPMS) to evaluate the critical temperature (T_c) and critical current density (J_c). CA doping effectively substituted C for B sites in MgB₂, resulting in a significantly enhanced $J_c(B)$ behavior. 5 wt% CA-doped MgB₂ showed a J_c of 7.76 kA/cm² being seven times higher than that of the pure MgB₂ at 5 K and 6.6 T (1.04 kA/cm²).

Acknowledgement

This research was supported by a grant (R-2006-1-248) from Electric Power Industry Technology Evaluation & Planning (ETEP), Republic of Korea

Keywords: Cellulose acetate, In-situ, MgB₂, J_c (B)