Superconducting Gap Symmetry for BaFe_{1.8}Co_{0.2}As₂ Superconductor

Soo Hyun Kim^a, Changho Choi^a, Myung-Hwa Jung^a, Ki-Young Choi^{a,c}, X. F. Wang^b, X. H. Chen^b, Jae Dong Noh^c, X L Wang^d, and Sung-Ik Lee^a

^aNational Creative Research Initiative Center for Superconductivity, Department of Physics, Sogang University, Seoul 121-742, Republic of Korea

^bHefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

^cDepartment of Physics, Seoul University, Seoul 130-743, Republic of Korea

^dInstitute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia

To clarify the gap structure of the iron-pnictide superconductors, we synthesized optimally doped single crystals of BaFe_{1.8}Co_{0.2}As₂, which had a critical temperature, T_c , of 23.6 K, by using the self flux method. The initial M-H curve was used to find the lower critical field, H_{cl} , which was extracted from the point of deviation from Meissner linearity in this curve. H_{cl} showed a saturation behavior at temperatures below 3.5 K, which indicated s-wave gap symmetry at low temperatures. The in-plane penetration depth was estimated to be 169 nm, and the super-fluid density deviated from the Uemura relation. In addition to this, the full range of the temperature dependence of H_{cl} was explained by using a multi-gap structure, especially two s-wave gap symmetry. We estimate the magnitude of the two gap as $\Delta_1(0) = 1.37 \pm 0.2$ meV for the small gap and $\Delta_2(0) = 3.84 \pm 0.2$ meV for the large gap.

Keywords: Gap symmetry, FeAs superconductor, Uemura relation