Effect of Y₂O₃ Nanoparticles on Flux-pinning Properties of YBa₂Cu₃O_{7-x} Thin Films

Hai-Duc Tran^a, D. Sreekantha Reddy^a, Chang Hwan Wie^a, Byeongwon Kang^{a,*}, Sangjun Oh^b, Sung-Ik Lee^c

^a Chungbuk National University, Cheongju, Korea ^b National Fusion Research Institute, Daejeon, Korea ^c Sogang University, Seoul, Korea

Introduction of proper impurity into the YBa₂Cu₃O_{7-x} (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate the effect of the introduction of Y_2O_3 nanoparticles on the critical current density J_C of YBCO films. Y_2O_3 nanoparticles are created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/Y₂O₃/LAO or Y_2O_3 /YBCO/STO, by pulsed laser deposition. The deposition temperature of YBCO films were varied (780°C and 800°C) to modify surface morphology of YBCO films. Surface morphology characterization reveals that the lower deposition temperature of 780°C creates nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produces much denser and smoother surface. J_C values of the YBCO films with Y_2O_3 particles are either remained nearly the same or decreased for the samples in which YBCO is grown at 780°C. On the other hand, J_C values are enhanced for the samples in which YBCO is grown at higher temperature of 800°C. The difference in the effect of Y_2O_3 can be explained by the fact that the higher deposition temperature of 800°C reduces intrinsic pinning centers and J_C is enhanced by introduction of artificial pinning centers in the form of Y_2O_3 nanoparticles.

Keywords: YBCO thin film, Critical current density, Pinning centers, Y2O3