Fabrication and Characterization of MgB₂ Superconductor by Addition of Polyacylic Acid

S. M. Lee^a, S. M. Hwang^a, C. M. Lee^a, W. Kim^a, J. H. Lim^a, J. Joo^{*,a}, W. N. Kang^b,

B. -H. Jun^c, C. -J. Kim^c

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Korea ^b BK21 Physics Division and Department of Physics, Sungkyunkwan University, Suwon, Gyeonggi, Korea ^c Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, Korea

We fabricated the carbon doped MgB₂ bulks by addition of polyacylic acid (PAA) as a C source and evaluated variation of the lattice parameter, grain size, electrical connectivity, microstructure, and critical properties of MgB2 bulks. The boron powder and PAA were mixed in NN-dimethylformamide and then the solvent was burnt out at 200°C. The carbon treated boron powder was mixed with magnesium powder and the mixture was compacted by uniaxially pressing at 500 MPa, followed by sintering at 900°C for 1 h in high purity Ar atmosphere. The phase formation, lattice change, and microstructure were characterized and correlated with the T_c and J_c variations.

Microstructure was observed by scanning electron microscopy (SEM) and phase confirmation was performed by high resolution x-ray diffraction (HR-XRD). The critical temperature (T_c) and critical current density (J_c) were measured by the standard four-probe method in cryostat and magnetic property measurement system (MPMS), respectively. We observed that the lattice parameters and J_c were significantly dependent on the amount of PAA addition.

Acknowledgement

This research was supported by a grant (R-2006-1-248) from Electric Power Industry Technology Evaluation & Planning (ETEP), Republic of Korea.

Keywords: Carbon doping, Critical current density, Solution process, MgB₂ bulk, Polyacylic acid.