INVITED

Progress of MgB₂ Superconductor

J. H. Kim^{1,2}, H. Kumakura², S. X. Dou¹

¹ Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields avenue, Wollongong, New South Wales 2522, Australia

² Superconducting Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Our continuous efforts to increase the performance of MgB₂ wires over the past few years are summarized in Figure 1. Stoichiometric binary MgB₂ wires with various sheath materials and different numbers of filaments were first fabricated. Then, wires with 10% excess Mg plus SiC dopant (Mg_{1.1}B₂-SiC), 15% excess Mg only (Mg_{1.15}B₂), and 15% excess Mg plus a SiC dopant (Mg_{1.15}B₂-SiC) were introduced. However, the best critical current density, J_c , was limited to 10⁵ Acm⁻² at 6 T and 10⁴ Acm⁻² at 11.5 T, respectively. Now with the malic acid doping (MgB₂-10wt% C₄H₆O₅), J_c values as high as 10⁵ Acm⁻² at 6.8 T and 10⁴ Acm⁻² at 11.7 T, comparable to those of commercial NbTi wires are achieved. The J_c is about 25,300 Acm⁻² at 4.2 K and 10 T. However, much more attentions and efforts are still needed for real applications. Very recently, a cold high pressure densification has been suggested as an alternative way to enhance the mass density after a mechanical deformation process. The J_c at 4.2 K was reported to be further increased to ~40,000 Acm⁻² for a malic acid doped conductor sintered at 600°C for 4 hours.

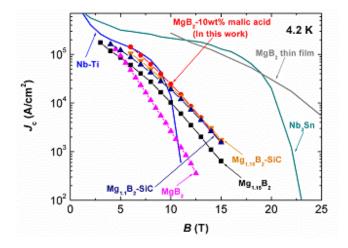


Figure 1. Comparison of *J*_c-*B* characteristics at 4.2 K of the malic acid doped wire with those of other commercial MgB₂ wires fabricated by the Hyper Tech Research. The malic acid doped MgB₂ wire sintered at 600°C for 4 hours. The critical current density was about 25,300 Acm⁻² at 4.2 K and 10 T.