
An Adaptive, Personalised Chording Keyboard

↲
↲

Tuan Pham*, Kangil Kim**, Bob McKay**, Xuan Hoai Nguyen ***

↲

Abstractˇˇ We present a design for personalisation of a chording keyboard.

There are two primary design goals. Firstly, the keyboard layout should be easy to

learn, and easy to use, taking into account the background and physical

constraints of the user. Secondly, the keyboard layout should be readily extensible,

based on the previous behaviour of the keyboard user. The design proposal

accomplishes these goals, and can be simply implemented on cost-effective

hardware. In addition, we present preliminary experimental results on optimising

the initial keyboard layout.

↲

핵심어: Keyboard, Chording, Text Entry, Adaptive, Learning

This research was partially supported by Korea Research Foundation Grant Number 2007-KRF-331-D00415,

and by the Brain Korea 21 Project. Seoul National University Institute for Computer Science and Technology

provided facilities for this research. The work benefited especially from discussions with Dr Kim Dong-Kyun of

Seoul National University Structural Complexity Laboratory..

*주저자 : 서울대학교 컴퓨터공학과 석사과정생 Minh Tuan Pham e-mail: tuanpm84@gmail.com

**공동저자 : 서울대학교 컴퓨터공학과 박사과정생 Kangil Kim e-mail: kangil.kim.01@gmail.com

 서울대학교 컴퓨터공학과 교수 Bob McKay; e-mail: rimsnucse@gmail.com

***교신저자 : 서울대학교 컴퓨터공학과 교수 Xuan Hoai Nguyen; e-mail: nxhoai@gmail.com

�H�C�I�2�0�0�9� 학술대회

�2�4�5

1. Introduction

This research is motivated by four primary

considerations:

1. That current high-speed text input modes

are insufficiently portable and adaptable for use in

active situations (for example qwerty [1]and dvorak [2]

keyboards)

2. That current portable input devices are both

inefficient for sustained input, and require too much

attention for many portable requirements (alpha-

numeric keypads, haptic screen keypads)

3. That standard input interfaces (USB, W-

USB, bluetooth) remove the need for input device

formats to be standardised (there is no need to use

someone else’s input device if one’s own portable

input device can be readily connected)

4. That personalised optimisation and machine

learning can generate layouts better suited to the

individual than can a one-size-fits-all approach

Thus our emphasis is on optimisation and learning

methods, to adapt the coding of a particular physical

text input device to the user, rather than vice versa.

In this paper, we will report an optimisation and

learning framework suitable for this task.

Text input systems generally fall into three classes:

1. Positional input systems (such as qwerty or

dvorak including haptic versions of these), in which

one position is used for each character 　 thus

requiring a large number of keys to generate the ~100

characters required for most natural languages

2. Chording devices, where each finger

corresponds to only one key, and multiple

simultaneous key presses are used to generate specific

characters (thus requiring at least 7 keys to generate

100 characters) 　 such as the stenotype machine [3]

traditionally used by court reporters

3. Repetition-based devices, in which

characters are distinguished by length and/or

repetition of key presses (Morse keying [4] is the most

widely recognised of these).

Of course combinations are possible. Thus most

current-generation phones use a a combination of

positional and repetition modes, while the twiddler ţ

keyboard [5] combines positional and chording modes,

to allow up to 255 characters from four fingers (or in

more recent versions, 1023 from five fingers).

Unfortunately the twiddler is no longer in production.

Most current-generation text input devices rely on

a fixed coding, and require users to adapt to that

coding. The twiddler keyboard is a partial exception:

while a standard key-mapping is supplied, the user is

free to adapt the key-mapping to suit personal

requirements; however no software support for this

process is provided.

In the present work, the discussion is framed

around a ten-finger pure-chording device (we have

specific implementations in mind, but for patent

reasons cannot discuss these in detail). However the

techniques described here can be readily extended to

alternative device structures such as the twiddler. The

discussion is also framed around ASCII-based

character sets; however preliminary investigation of

extensions to other alphabetic character sets (Korean)

and to ideographic character sets (Chinese) have also

been conducted.

2. Design

We divide the adaptation/personalisation process

into two phases:

1. A pre-use phase, in which the user supplies

information about themselves and their requirements,

which is used to generate an initial, relatively simple

and redundant keyboard mapping, optimised to those

requirements

2. An in-use phase, in which on-line learning

methods are used to suggest potential mapping

improvements to the user, and to negotiate

installation of those improvements

This paper concentrates on the pre-use phase,

though the in-use phase is briefly discussed.

2.1 Pre-use Phase

The task of the Genetic Algorithm (GA) is to

optimise the objective 　 which in our case measures

the ease of use and learning - over the search space

of possible key mappings. In this initial work, we used

a relatively simple GA representation, which we

describe below.

2.1.1 Representation

�2�4�6

() []() () []() ()cRcrightDcRcleftDcD CCL ** εε −=−=

Figure 1: Finger Numbering

A coding for a character is just a string of ten bits,

representing the state of the ten fingers

(l,1)…(l,5),(r,1)…(r,5). Thus a full coding for a set of k

characters may be represented by a k*10 bit array,

representing the coding for each of the characters.

2.1.2 Objective Function

The optimisation process uses a genetic algorithm

[6] to optimise an objective function. Thus the primary

task, for the user, is to specify that objective function.

In the current version of the system, we divide the

objective into two parts:

1. Ease of learning

2. Ease (speed) of use

That is, for any coding code, we define the fitness

fit to be

(1)

where mem and typ are functions respectively

representing the difficulty of memorising and of

typing with code, and μ and τ are tuning parameters,

intended to reflect the importance, to the particular

user, of these two aspects. In this initial version of

the work, they were both set to 1.0.

The difficulty of learning, mem, was defined as:

(2)

where the sum ranges over the whole character set,

and f is the frequency of a character in the given

language (English in all these experiments).

The difficulty of learning a particular character

depends on two factors. The first factor simply reflects

the complexity of the code which must be remembered.

In the normal case, it is the sum of the cost of

learning each hand (which we define later). However in

the special case where the two hands are symmetric,

we assume that this is easier to remember; in that

case, the cost is simply that of one hand. The second

factor gives a similarity reward in the case that the

two hands are similar but different. For instance, if

the left hand is 00000 and the right 00100, there is a

reward of 1. In other words, the reward is equal to the

number of bits differing left and right.

Thus, the difficulty of learning a particular

character is:

(3)

if left[c] = right[c]. Otherwise (left[c] ≠ right[c]),:

(4)

In this formula, ε is a tuning parameter for

weighting the importance of the two factors.

The difficulty of typing, typ, in turn has two

components: the intrinsic difficulty of typing a

particular character code, and the difficulty of

transitioning between pairs of character codes. Thus

we computed it as:

(5)

 Again, β is a tuning parameter for weighting the

importance of these two aspects, initially set to 1.0.

The difficulty of typing a code naturally reflects the

difficulty of typing the individual characters in the

code, but should be weighted by the expected

frequency of typing that character (thus in English, it

is far more important for the character ‘e’ to be

easy to type than the character ‘q’). We thus used

the definition:

(6)

where the sum ranges over all characters c in the

character set, and f is the frequency of that character

in the given language (in these experiments, English,

but more generally, reflecting the choice of the user).

mem code()= f c()* DL code c[]()
c∈chars
∑

() []() []() ()cRcrightDcleftDcD CCL *ε−+=

typ(code) = diff (code)+ β * trans (code)fit code() = μ * mem(code)+τ * typ(code)

diff (code) = DC code c[]()* f c()
c∈ chars
∑

�2�4�7

We assume that the difficulties of typing the left-

hand and right-hand chords of a character are

independent, and that the overall difficulty is just the

max of the two, weighted by the handedness of the

typist (that is, a right-hander can more readily type

right-hand chords, conversely for a left-hander. For

simplicity, we assume that the difficulty of hands is

symmetric (that is, the same chord is equally difficult

for either hand, weighted only by the ease of use of

that hand). Obviously, this would not be correct for

users with specific difficulties; the representation is

readily extended for these cases, but in this paper we

only consider the simple case.

The difficulty of typing a particular character is

thus:

(7)

where the coefficient alpha is less than 1.0 for

right-handers, and greater for left-handers (in these

experiments, we used alpha=0.8)

We assume that the difficulty of forming a

particular chord relates to the difficulty of using

particular fingers, and the difficulty of having

adjacent fingers in opposite states. For simplicity in

expressing the adjacency condition, we assume that

there are two ‘extra’ fingers, 0 and 6, which are

always in the ‘unpressed’ state:

(8)

Where h is left[c] or right[c] as appropriate, h(k) is

the corresponding bit value of h (i.e. 1 for pressed and

0 for unpressed), d[k] is the difficulty of pressing

finger k, ch[i,j] is one if fingers i and j in opposite

states in h, zero if they are in the same state, and δ
and λ are tuning constants. In these experiments, δ
and λ were set to 1.0, and d had the values [1.0, 1.0,

1.2, 1.5, 1.7]. These values will be experimentally

tuned in future work.

There are two “illegal” exceptions to the above.

When both hands are all zero (that is, no keys are

pressed), it is impossible for the system to distinguish

this from the user simply not having formed that

character yet. Secondly, if two characters are

allocated the same binary code, it will be impossible

for the system to know which character is intended.

These two cases are regarded as illegal, and given a

very large penalty fitness of 100,000.

2.2 In-use Phase

In the in-use phase (not yet implemented), the

system builds a frequency model of the user’s typing:

　 Mis-typings of single characters

　 Multigram contexts of mistypings

　 Commonly-typed multigrams (bigrams,

trigrams…)

Of course, as the user’s typing facility increases,

mis-typings become rarer, and the system’s ability

to use multigram context to predict the correct

character increases, so the need for error coding

reduces. On the other hand, as users of older chording

devices such as the stenotype discovered, single chords

for commonly-typed multigrams (such as ‘ing’,

‘ion’, ‘er’ in English) can greatly increase typing

speed.

Hence the system, in use, is designed to provide the

user with suggestions of error codings that are no

longer needed, and may be re-used for multigram

sequences. New multigram codings are optimised, as

far as possible, to be mnemonic.

3. Experiments

We implemented a Genetic Algorithm based on the

GALib package [7], to optimise the objective function

previously defined. For these experiments, we limited

the character set to the 26 English letters plus the

space character, both to simplify the optimisation

problem for the experiments, and to avoid complex

issues of the relative frequencies of alphabetic and

other characters in different types of text. We used

character frequency distributions for English from

Data-Compression.com [8], We used the simple bit-

array representation previously described.

3.1 Evolutionary Algorithm

We used GALib in close to its default settings. The

primary aim of these experiments was to determine

the roughness of our fitness landscape, and hence the

exploration/exploitation trade-off required. Thus we

simply used the two default evolutionary operators,

point mutation and single-point crossover, at their

default rates; that is, the probability of mutation of

any given bit is 0.001, and the probability of an

individual participating in a crossover is 0.9. However

DC h()= h k()* d[k]
k=1

5

∑

* δ + λ* chh k−1,k[]+ chh k,k+1[]()()

DC code c[]()= Max DC left c[](),α* DC right c[](){ }

�2�4�8

to give closer control of the stringency of selection, we

used tournament selection rather than the default

roulette selection.

Preliminary experiments showed that there was a

high risk of losing good solutions once found, hence

we added elitism to the default GALib settings, with

an elite of one.

The experimental settings are shown in detail in

table 1.

Trials/Setting 30

Representation 27 * 10 bit

array

Population Size 1,000; 10,000

Number of

Generations

1,000; 100

Number of

evaluations

1,000,000

Mutation operator Point mutation

Mutation rate 0.001 per bit

Crossover operator One-point

Crossover rate 0.9

Selection operator Tournament

Tournament size 3; 5

Elite Size 1

Table 1: Evolutionary Settings

3.2 Experimental Trials

Since the primary aim of this work was to

investigate the difficulty of the fitness landscape, we

set a fixed budget of evaluations (1,000,000

evaluations) and conducted bi-factorial analysis of the

effect of population size and of tournament size. In

detail, we used two population sizes (1,000 and 10,000,

implying 1,000 and 100 generations respectively), and

tournament sizes of 3 and 5. Each treatment was used

in 30 trials, using the same set of random-number-

generator seeds in each trial.

4. Results

For each trial, we recorded the best fitness achieved

over the whole run (because we used elitism, it was

also the best in the final generation). The mean and

standard deviation, over each treatment, of the best

fitness in each trial, is shown in table 2.

Tournament 3 5

Population

1,000 106.4±2.8 105.4±2.8

p-value 0.006 0.15

10,000 124.1±1.7 104.9±1.4

p-value 1.5*10-47 N/A

Table 2: Mean Best Fitness by Treatment

 From the table, it is apparent that the tournament

size 5, population 10,000 treatment is the most

effective: that is, reasonably stringent selection,

combined with a large population, works well for this

problem.

To confirm this, we used Student’s t-test (one-

tailed heteroscedastic) to test significance of the

differences; while we did not test for normality (and

indeed, the distributions are unlikely to be normal),

the p-values for the differences in tournament size

are fairly clear; it is not so clear that population size

is significant.

The best fitness achieved, over all runs, was 99.66,

The corresponding coding is shown in table 3.

A L: 01000 R: 10100

B L: 01000 R: 01000

C L: 11000 R: 01000

D L: 01000 R: 11100

E L: 01000 R: 00000

F L: 00100 R: 01000

G L: 10000 R: 00000

H L: 10000 R: 10000

I L: 00000 R: 10100

J L: 11000 R: 11100

K L: 10000 R: 11000

L L: 00000 R: 01100

M L: 01000 R: 00100

N L: 00000 R: 11100

O L: 01000 R: 11000

P L: 11000 R: 00100

Q L: 11000 R: 01100

R L: 00000 R: 00100

S L: 00000 R: 10000

T L: 00000 R: 01000

U L: 01000 R: 01100

V L: 01100 R: 10000

W L: 11000 R: 10000

X L: 10000 R: 01100

Y L: 01000 R: 10000

Z L: 01100 R: 00100

Space L: 00000 R: 11000

�2�4�9

Table 3: Best Character Coding Found

A more detailed understanding of the evolutionary

process may be gained from figures 2 and 3, showing

the mean (over all trials in a treatment) of

respectively the best, and the mean, fitness in a

population after a specific number of evaluations.

Figure 2: Mean Best Fitnesses (over all trials) by #

of Evaluations

Figure 3: Mean Average Fitnesses (over all trials)

by # of Evaluations

These figures have some interesting implications.

Firstly, it is clear that diversity is an issue for the

smaller-population runs, and that in these runs,

search has essentially stagnated by about 100,000

evaluations (100 generations). Secondly, it seems that

the most successful setting (population 10,000;

tournament size 5) also generates very large numbers

of illegal codings (the mean fitness is too high to have

been generated in any other way).

5. Discussion

In the first generation, most runs have an average

fitness value of around 30,000, implying that around

30% of the individuals generated correspond to illegal

codes. In that same first generation, most runs have a

best fitness in the range 200-220. Thus the

improvement in fitness achieved by the evolutionary

algorithm is quite substantial. It seems clear that

substantially improved codings can be obtained

through evolution. It also seems clear that further

progress can be made through improving the

evolutionary settings.

The large number of illegal codings arising in the

most successful runs leads to a strong suspicion that

the global optimum is difficult to find at least

partially because it is closely surrounded by illegal

codings. This is not particularly surprising, because

the ease-of-use component of the fitness function

favours the codes for characters that often occur in

digrams being close together (ideally, one bit apart),

so that a single bit change can then change the coding

into an illegal one. In the short term, this problem

should be greatly ameliorated by incorporating local

search into the algorithm. In the longer term, once we

incorporate error handling into the fitness function

(see below), this is likely to move global optima

further away from illegal (double coding) codes,

reducing this aspect of the difficulty of search.

6. Conclusions

6.1 Assumptions and Limitations

The primary limitations of this work lie in the

fitness functions used. These are essentially subjective,

derived from our own experience and introspection.

There has, so far, been no experimental verification of

their validity. Of course, such validation is essential

for the future of this project; but experimental

validation requires physical realisations, which we do

not yet have. Thus this project was a first stage,

intended to demonstrate the viability of the approach,

and provide the justification for implementing physical

realisations. Thus from another perspective, our key

assumption is that, even if these particular fitness

functions require amendment, they are representative

of the kind of fitness function, and the likely

optimisation difficulty, required for this project.

A second key limitation lies in the representation

and genetic operators used. Applying a GA is not

merely a matter of naively choosing a representation

in a GA package, and then blindly applying the

evolutionary operators it supplies. Rather, the

representation and operators must be tuned based on

�2�5�0

the implementors’ knowledge of the problem. We are

very aware that improved representations and

operators are required. Within the current encoding,

mutation operators that permute the use of specific

fingers in a group of neighbouring character codes

would be desirable, as would a simple exchange

mutation, permitting two characters to exchange their

encoding. Similarly, recombination operators based on

grouping characters together based on their distance,

then exchanging them as a group, are more likely to

be effective than the random exchange given by

uniform-random single-point crossover.

6.2 Further Work

This paper reports on the pilot stage of what we

intend to be a much larger future project. Future work

will concentrate on a number of different aspects:

• Further optimising the GA settings and

representation. It is unlikely that the current

GA representation is optimal, and we will

investigate different encodings. It seems

likely that GA performance could be

substantially improved by:

o additional, more problem-specific

mutation and recombination

operators

o further tuning of algorithm

parameters

o diversity mechanisms 　 in

particular, fitness sharing based on

Manhattan distance

o local search, since the fitness

landscape is rough on a coarse

scale, but may be relatively smooth

on a local scale

• Extending the fitness function to incorporate

error correction/detection capability. This is

readily incorporated, since one-bit error

detection simply requires that the Manhattan

distance between characters be at least two

bits, while error correction requires a three-

bit distance. Unfortunately 10 bits does not

give sufficient code space for full 1-bit error

correction on the whole ASCII keyspace, but

we believe it will be feasible to achieve 1-bit

error correction for common alphabetic

characters, combined with 1-bit error

detection for less common characters.

However there is an important further issue:

the error correction objective is likely to be

in substantial conflict with the ease-of-

typing objective, hence the fitness landscape

is likely to deteriorate with the inclusion of

this objective.

• Evaluating and tuning the fitness functions

in real-world application, based on purpose-

built hardware. We already have designs for

realisations of this hardware, and expect to

be able to build prototypes within the next

few months.

• Implementing the In-Use phase of the

project

6.3 Summary

In this paper, we have described a project aiming to

design and build an adaptive, personalisable chording

keyboard, intended for portable and mobile use. The

ultimate aim is to build a keyboard mechanism that

will be highly portable, easy to learn, and easy and

efficient to use. We have presented experimental

results suggesting that evolutionary algorithms will be

capable of performing the optimisation required, and

thus that the ultimate aim of a personalised keyboard

layout, taking into account the background knowledge,

physical abilities and intended applications of the user,

is realistic.

Acknowledgements

This research was partially supported by Korea

Research Foundation Grant Number 2007-KRF-331-

D00415, and by the Brain Korea 21 Project. Seoul

National University Institute for Computer Science and

Technology provided facilities for this research. The

work benefited especially from discussions with Dr

Kim Dong-Kyun of Seoul National University

Structural Complexity Laboratory.

References

[1] E. Clarkson , J. Clawson , K. Lyons , T. Starner,

An empirical study of typing rates on mini-QWERTY

keyboards, CHI '05 extended abstracts on Human

factors in computing systems, April 02-07, 2005,

Portland, OR, USA

[2] Cassingham, R.C. The Dvorak Keyboard. Freelance

Communications, 1986

[3] W. S. Ireland, "Stenotype Reporter," 3d ed., The

Stenotype Company, Indianapolis (1914).

[4] International Morse Code, International

Telegraphic Union 　 Radiocommunication M. 1677,

2004,

�2�5�1

[5]K. Lyons, T. Starner, D. Plaisted, J. Fusia, A.

Lyons, A. Drew, E. W. Looney Twiddler typing: one-

handed chording text entry for mobile phones,

Proceedings of the SIGCHI conference on Human

factors in computing systems 671 　 678, 2004

[6] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-Wesley,

1989

[7] GALib website:

http://lancet.mit.edu/galib-2.4/GAlib.html

(retrieved 2009-01-04)

[8] Data-Compression.com website:

http://www.data-compression.com/english.html

(retrieved 2009-01-04)

�2�5�2

