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Abstractˇˇ We present a design for personalisation of a chording keyboard. 

There are two primary design goals. Firstly, the keyboard layout should be easy to 

learn, and easy to use, taking into account the background and physical 

constraints of the user. Secondly, the keyboard layout should be readily extensible, 

based on the previous behaviour of the keyboard user. The design proposal 

accomplishes these goals, and can be simply implemented on cost-effective 

hardware. In addition, we present preliminary experimental results on optimising 

the initial keyboard layout. 

↲ 

 

 

핵심어: Keyboard, Chording, Text Entry, Adaptive, Learning 

 

 

 

 

 

 

 

This research was partially supported by Korea Research Foundation Grant Number 2007-KRF-331-D00415,

and by the Brain Korea 21 Project. Seoul National University Institute for Computer Science and Technology

provided facilities for this research. The work benefited especially from discussions with Dr Kim Dong-Kyun of

Seoul National University Structural Complexity Laboratory.. 

 

*주저자 : 서울대학교 컴퓨터공학과 석사과정생 Minh Tuan Pham e-mail: tuanpm84@gmail.com 

**공동저자 : 서울대학교 컴퓨터공학과 박사과정생 Kangil Kim e-mail: kangil.kim.01@gmail.com 

 서울대학교 컴퓨터공학과 교수 Bob McKay; e-mail: rimsnucse@gmail.com 

***교신저자 : 서울대학교 컴퓨터공학과 교수 Xuan Hoai Nguyen; e-mail: nxhoai@gmail.com 

 

 

�H�C�I�2�0�0�9� 학술대회

�2�4�5



1. Introduction 

This research is motivated by four primary 

considerations: 

1. That current high-speed text input modes 

are insufficiently portable and adaptable for use in 

active situations (for example qwerty [1]and dvorak [2] 

keyboards)  

2. That current portable input devices are both 

inefficient for sustained input, and require too much 

attention for many portable requirements (alpha-

numeric keypads, haptic screen keypads) 

3. That standard input interfaces (USB, W-

USB, bluetooth) remove the need for input device 

formats to be standardised (there is no need to use 

someone else’s input device if one’s own portable 

input device can be readily connected) 

4. That personalised optimisation and machine 

learning can generate layouts better suited to the 

individual than can a one-size-fits-all approach 

Thus our emphasis is on optimisation and learning 

methods, to adapt the coding of a particular physical 

text input device to the user, rather than vice versa. 

In this paper, we will report an optimisation and 

learning framework suitable for this task. 

Text input systems generally fall into three classes: 

1. Positional input systems (such as qwerty or 

dvorak including haptic versions of these), in which 

one position is used for each character 　 thus 

requiring a large number of keys to generate the ~100 

characters required for most natural languages 

2. Chording devices, where each finger 

corresponds to only one key, and multiple 

simultaneous key presses are used to generate specific 

characters (thus requiring at least 7 keys to generate 

100 characters) 　 such as the stenotype machine [3] 

traditionally used by court reporters 

3.  Repetition-based devices, in which 

characters are distinguished by length and/or 

repetition of key presses (Morse keying [4] is the most 

widely recognised of these). 

Of course combinations are possible. Thus most 

current-generation phones use a a combination of 

positional and repetition modes, while the twiddler ţ 

keyboard [5] combines positional and chording modes, 

to allow up to 255 characters from four fingers (or in 

more recent versions, 1023 from five fingers). 

Unfortunately the twiddler is no longer in production. 

Most current-generation text input devices rely on 

a fixed coding, and require users to adapt to that 

coding. The twiddler keyboard is a partial exception: 

while a standard key-mapping is supplied, the user is 

free to adapt the key-mapping to suit personal 

requirements; however no software support for this 

process is provided. 

In the present work, the discussion is framed 

around a ten-finger pure-chording device (we have 

specific implementations in mind, but for patent 

reasons cannot discuss these in detail). However the 

techniques described here can be readily extended to 

alternative device structures such as the twiddler. The 

discussion is also framed around ASCII-based 

character sets; however preliminary investigation of 

extensions to other alphabetic character sets (Korean) 

and to ideographic character sets (Chinese) have also 

been conducted. 

2. Design  

We divide the adaptation/personalisation process 

into two phases: 

1. A pre-use phase, in which the user supplies 

information about themselves and their requirements, 

which is used to generate an initial, relatively simple 

and redundant keyboard mapping, optimised to those 

requirements 

2. An in-use phase, in which on-line learning 

methods are used to suggest potential mapping 

improvements to the user, and to negotiate 

installation of those improvements 

This paper concentrates on the pre-use phase, 

though the in-use phase is briefly discussed. 

2.1 Pre-use Phase 

The task of the Genetic Algorithm (GA) is to 

optimise the objective 　 which in our case measures 

the ease of use and learning - over the search space 

of possible key mappings. In this initial work, we used 

a relatively simple GA representation, which we 

describe below.  

2.1.1 Representation 
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Figure 1: Finger Numbering 

A coding for a character is just a string of ten bits, 

representing the state of the ten fingers 

(l,1)…(l,5),(r,1)…(r,5). Thus a full coding for a set of k 

characters may be represented by a k*10 bit array, 

representing the coding for each of the characters. 

2.1.2 Objective Function 

The optimisation process uses a genetic algorithm 

[6] to optimise an objective function. Thus the primary 

task, for the user, is to specify that objective function. 

In the current version of the system, we divide the 

objective into two parts: 

1. Ease of learning 

2. Ease (speed) of use 

That is, for any coding code, we define the fitness 

fit to be 

 

(1) 

 

where mem and typ are functions respectively 

representing the difficulty of memorising and of 

typing with code, and μ and τ are tuning parameters, 

intended to reflect the importance, to the particular 

user, of these two aspects. In this initial version of 

the work, they were both set to 1.0. 

The difficulty of learning, mem, was defined as: 

 

(2) 

 

where the sum ranges over the whole character set, 

and f is the frequency of a character in the given 

language (English in all these experiments). 

The difficulty of learning a particular character 

depends on two factors. The first factor simply reflects 

the complexity of the code which must be remembered. 

In the normal case, it is the sum of the cost of 

learning each hand (which we define later). However in 

the special case where the two hands are symmetric, 

we assume that this is easier to remember; in that 

case, the cost is simply that of one hand. The second 

factor gives a similarity reward in the case that the 

two hands are similar but different. For instance, if 

the left hand is 00000 and the right 00100, there is a 

reward of 1. In other words, the reward is equal to the 

number of bits differing left and right. 

Thus, the difficulty of learning a particular 

character is: 

 

(3) 

 

if left[c] = right[c]. Otherwise (left[c] ≠ right[c]),: 

 

(4) 

 

In this formula, ε is a tuning parameter for 

weighting the importance of the two factors. 

The difficulty of typing, typ, in turn has two 

components: the intrinsic difficulty of typing a 

particular character code, and the difficulty of 

transitioning between pairs of character codes. Thus 

we computed it as:  

 

(5) 

 

 Again, β is a tuning parameter for weighting the 

importance of these two aspects, initially set to 1.0. 

The difficulty of typing a code naturally reflects the 

difficulty of typing the individual characters in the 

code, but should be weighted by the expected 

frequency of typing that character (thus in English, it 

is far more important for the character ‘e’ to be 

easy to type than the character ‘q’). We thus used 

the definition: 

 

(6) 

 

where the sum ranges over all characters c in the 

character set, and f is the frequency of that character 

in the given language (in these experiments, English, 

but more generally, reflecting the choice of the user). 

mem code( )= f c( )* DL code c[ ]( )
c∈chars
∑

( ) [ ]( ) [ ]( ) ( )cRcrightDcleftDcD CCL *ε−+=

typ(code ) = diff (code )+ β * trans (code )fit code( ) = μ * mem(code)+τ * typ(code)

diff (code ) = DC code c[ ]( )* f c( )
c∈ chars
∑
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We assume that the difficulties of typing the left-

hand and right-hand chords of a character are 

independent, and that the overall difficulty is just the 

max of the two, weighted by the handedness of the 

typist (that is, a right-hander can more readily type 

right-hand chords, conversely for a left-hander. For 

simplicity, we assume that the difficulty of hands is 

symmetric (that is, the same chord is equally difficult 

for either hand, weighted only by the ease of use of 

that hand). Obviously, this would not be correct for 

users with specific difficulties; the representation is 

readily extended for these cases, but in this paper we 

only consider the simple case. 

The difficulty of typing a particular character is 

thus: 

 

(7) 

 

where the coefficient alpha is less than 1.0 for 

right-handers, and greater for left-handers (in these 

experiments, we used alpha=0.8) 

We assume that the difficulty of forming a 

particular chord relates to the difficulty of using 

particular fingers, and the difficulty of having 

adjacent fingers in opposite states. For simplicity in 

expressing the adjacency condition, we assume that 

there are two ‘extra’ fingers, 0 and 6, which are 

always in the ‘unpressed’ state: 

 

 

 

(8) 

 

Where h is left[c] or right[c] as appropriate, h(k) is 

the corresponding bit value of h (i.e. 1 for pressed and 

0 for unpressed), d[k] is the difficulty of pressing 

finger k, ch[i,j] is one if fingers i and j in opposite 

states in h, zero if they are in the same state, and δ 
and λ are tuning constants. In these experiments, δ 
and λ were set to 1.0, and d had the values [1.0, 1.0, 

1.2, 1.5, 1.7]. These values will be experimentally 

tuned in future work. 

There are two “illegal” exceptions to the above. 

When both hands are all zero (that is, no keys are 

pressed), it is impossible for the system to distinguish 

this from the user simply not having formed that 

character yet. Secondly, if two characters are 

allocated the same binary code, it will be impossible 

for the system to know which character is intended. 

These two cases are regarded as illegal, and given a 

very large penalty fitness of 100,000. 

2.2 In-use Phase 

In the in-use phase (not yet implemented), the 

system builds a frequency model of the user’s typing: 

　 Mis-typings of single characters 

　 Multigram contexts of mistypings 

　 Commonly-typed multigrams (bigrams, 

trigrams…) 

Of course, as the user’s typing facility increases, 

mis-typings become rarer, and the system’s ability 

to use multigram context to predict the correct 

character increases, so the need for error coding 

reduces. On the other hand, as users of older chording 

devices such as the stenotype discovered, single chords 

for commonly-typed multigrams (such as ‘ing’, 

‘ion’, ‘er’ in English) can greatly increase typing 

speed. 

Hence the system, in use, is designed to provide the 

user with suggestions of error codings that are no 

longer needed, and may be re-used for multigram 

sequences. New multigram codings are optimised, as 

far as possible, to be mnemonic. 

3. Experiments  

We implemented a Genetic Algorithm based on the 

GALib package [7], to optimise the objective function 

previously defined. For these experiments, we limited 

the character set to the 26 English letters plus the 

space character, both to simplify the optimisation 

problem for the experiments, and to avoid complex 

issues of the relative frequencies of alphabetic and 

other characters in different types of text. We used 

character frequency distributions for English from 

Data-Compression.com [8], We used the simple bit-

array representation previously described. 

3.1 Evolutionary Algorithm 

We used GALib in close to its default settings. The 

primary aim of these experiments was to determine 

the roughness of our fitness landscape, and hence the 

exploration/exploitation trade-off required. Thus we 

simply used the two default evolutionary operators, 

point mutation and single-point crossover, at their 

default rates; that is, the probability of mutation of 

any given bit is 0.001, and the probability of an 

individual participating in a crossover is 0.9. However 

DC h( )= h k( )* d[k]
k=1

5

∑

* δ + λ* chh k−1,k[ ]+ chh k,k+1[ ]( )( )

DC code c[ ]( )= Max DC left c[ ]( ),α* DC right c[ ]( ){ }
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to give closer control of the stringency of selection, we 

used tournament selection rather than the default 

roulette selection.  

Preliminary experiments showed that there was a 

high risk of losing good solutions once found, hence 

we added elitism to the default GALib settings, with 

an elite of one. 

The experimental settings are shown in detail in 

table 1. 

Trials/Setting 30 

Representation 27 * 10 bit 

array 

Population Size 1,000; 10,000 

Number of 

Generations 

1,000; 100 

Number of 

evaluations 

1,000,000 

Mutation operator Point mutation 

Mutation rate 0.001 per bit 

Crossover operator One-point 

Crossover rate 0.9 

Selection operator Tournament 

Tournament size 3; 5 

Elite Size 1 

Table 1: Evolutionary Settings 

 

3.2 Experimental Trials 

Since the primary aim of this work was to 

investigate the difficulty of the fitness landscape, we 

set a fixed budget of evaluations (1,000,000 

evaluations) and conducted bi-factorial analysis of the 

effect of population size and of tournament size. In 

detail, we used two population sizes (1,000 and 10,000, 

implying 1,000 and 100 generations respectively), and 

tournament sizes of 3 and 5. Each treatment was used 

in 30 trials, using the same set of random-number-

generator seeds in each trial. 

4. Results  

For each trial, we recorded the best fitness achieved 

over the whole run (because we used elitism, it was 

also the best in the final generation). The mean and 

standard deviation, over each treatment, of the best 

fitness in each trial, is shown in table 2. 

Tournament 3 5 

Population 

1,000 106.4±2.8 105.4±2.8

p-value 0.006 0.15 

10,000 124.1±1.7 104.9±1.4

p-value 1.5*10-47 N/A 

Table 2: Mean Best Fitness by Treatment 

 

 From the table, it is apparent that the tournament 

size 5, population 10,000 treatment is the most 

effective: that is, reasonably stringent selection, 

combined with a large population, works well for this 

problem.  

To confirm this, we used Student’s t-test (one-

tailed heteroscedastic) to test significance of the 

differences; while we did not test for normality (and 

indeed, the distributions are unlikely to be normal), 

the p-values for the differences in tournament size 

are fairly clear; it is not so clear that population size 

is significant. 

The best fitness achieved, over all runs, was 99.66, 

The corresponding coding is shown in table 3.  

 

A L: 01000   R: 10100 

B L: 01000   R: 01000 

C L: 11000   R: 01000 

D L: 01000   R: 11100 

E L: 01000   R: 00000 

F L: 00100   R: 01000 

G L: 10000   R: 00000 

H L: 10000   R: 10000 

I L: 00000   R: 10100 

J L: 11000   R: 11100 

K L: 10000   R: 11000 

L L: 00000   R: 01100 

M L: 01000   R: 00100 

N L: 00000   R: 11100 

O L: 01000   R: 11000 

P L: 11000   R: 00100 

Q L: 11000   R: 01100 

R L: 00000   R: 00100 

S L: 00000   R: 10000 

T L: 00000   R: 01000 

U L: 01000   R: 01100 

V L: 01100   R: 10000 

W L: 11000   R: 10000 

X L: 10000   R: 01100 

Y L: 01000   R: 10000 

Z L: 01100   R: 00100 

Space L: 00000   R: 11000 
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Table 3: Best Character Coding Found 

 

A more detailed understanding of the evolutionary 

process may be gained from figures 2 and 3, showing 

the mean (over all trials in a treatment) of 

respectively the best, and the mean, fitness in a 

population after a specific number of evaluations. 

Figure 2: Mean Best Fitnesses (over all trials) by # 

of Evaluations 

Figure 3: Mean Average Fitnesses (over all trials) 

by # of Evaluations 

 

These figures have some interesting implications. 

Firstly, it is clear that diversity is an issue for the  

 

smaller-population runs, and that in these runs, 

search has essentially stagnated by about 100,000 

evaluations (100 generations). Secondly, it seems that 

the most successful setting (population 10,000; 

tournament size 5) also generates very large numbers 

of illegal codings (the mean fitness is too high to have 

been generated in any other way). 

5. Discussion  

In the first generation, most runs have an average 

fitness value of around 30,000, implying that around 

30% of the individuals generated correspond to illegal 

codes. In that same first generation, most runs have a 

best fitness in the range 200-220. Thus the 

improvement in fitness achieved by the evolutionary 

algorithm is quite substantial. It seems clear that 

substantially improved codings can be obtained 

through evolution. It also seems clear that further 

progress can be made through improving the 

evolutionary settings. 

The large number of illegal codings arising in the 

most successful runs leads to a strong suspicion that 

the global optimum is difficult to find at least 

partially because it is closely surrounded by illegal 

codings. This is not particularly surprising, because 

the ease-of-use component of the fitness function 

favours the codes for characters that often occur in 

digrams being close together (ideally, one bit apart), 

so that a single bit change can then change the coding 

into an illegal one. In the short term, this problem 

should be greatly ameliorated by incorporating local 

search into the algorithm. In the longer term, once we 

incorporate error handling into the fitness function 

(see below), this is likely to move global optima 

further away from illegal (double coding) codes, 

reducing this aspect of the difficulty of search. 

6. Conclusions  

6.1 Assumptions and Limitations 

The primary limitations of this work lie in the 

fitness functions used. These are essentially subjective, 

derived from our own experience and introspection. 

There has, so far, been no experimental verification of 

their validity. Of course, such validation is essential 

for the future of this project; but experimental 

validation requires physical realisations, which we do 

not yet have. Thus this project was a first stage, 

intended to demonstrate the viability of the approach, 

and provide the justification for implementing physical 

realisations. Thus from another perspective, our key 

assumption is that, even if these particular fitness 

functions require amendment, they are representative 

of the kind of fitness function, and the likely 

optimisation difficulty, required for this project. 

A second key limitation lies in the representation 

and genetic operators used. Applying a GA is not 

merely a matter of naively choosing a representation 

in a GA package, and then blindly applying the 

evolutionary operators it supplies. Rather, the 

representation and operators must be tuned based on 

�2�5�0



the implementors’ knowledge of the problem. We are 

very aware that improved representations and 

operators are required. Within the current encoding, 

mutation operators that permute the use of specific 

fingers in a group of neighbouring character codes 

would be desirable, as would a simple exchange 

mutation, permitting two characters to exchange their 

encoding. Similarly, recombination operators based on 

grouping characters together based on their distance, 

then exchanging them as a group, are more likely to 

be effective than the random exchange given by 

uniform-random single-point crossover. 

6.2 Further Work 

This paper reports on the pilot stage of what we 

intend to be a much larger future project. Future work 

will concentrate on a number of different aspects: 

• Further optimising the GA settings and 

representation. It is unlikely that the current 

GA representation is optimal, and we will 

investigate different encodings. It seems 

likely that GA performance could be 

substantially improved by: 

o additional, more problem-specific 

mutation and recombination 

operators 

o further tuning of algorithm 

parameters 

o diversity mechanisms 　 in 

particular, fitness sharing based on 

Manhattan distance 

o local search, since the fitness 

landscape is rough on a coarse 

scale, but may be relatively smooth 

on a local scale 

• Extending the fitness function to incorporate 

error correction/detection capability. This is 

readily incorporated, since one-bit error 

detection simply requires that the Manhattan 

distance between characters be at least two 

bits, while error correction requires a three-

bit distance. Unfortunately 10 bits does not 

give sufficient code space for full 1-bit error 

correction on the whole ASCII keyspace, but 

we believe it will be feasible to achieve 1-bit 

error correction for common alphabetic 

characters, combined with 1-bit error 

detection for less common characters. 

However there is an important further issue: 

the error correction objective is likely to be 

in substantial conflict with the ease-of-

typing objective, hence the fitness landscape 

is likely to deteriorate with the inclusion of 

this objective.  

• Evaluating and tuning the fitness functions 

in real-world application, based on purpose-

built hardware. We already have designs for 

realisations of this hardware, and expect to 

be able to build prototypes within the next 

few months. 

• Implementing the In-Use phase of the 

project 

6.3 Summary 

In this paper, we have described a project aiming to 

design and build an adaptive, personalisable chording 

keyboard, intended for portable and mobile use. The 

ultimate aim is to build a keyboard mechanism that 

will be highly portable, easy to learn, and easy and 

efficient to use. We have presented experimental 

results suggesting that evolutionary algorithms will be 

capable of performing the optimisation required, and 

thus that the ultimate aim of a personalised keyboard 

layout, taking into account the background knowledge, 

physical abilities and intended applications of the user, 

is realistic.  
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