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ABSTRACT: The limited public funds available for infrastructure projects have led governments to consider private 
entities’ participation in long-term contracts for finance, construction, and operation of these projects to share risks and 
rewards between the public and the private. Because these projects have complicated risk evolutions, diverse contractual 
forms for each project member to hedge risks involved in a project are necessary. In light of this, Build-Operate-
Transfer(BOT) model is considered as effective to accomplish Public Private Partnerships(PPPs) with a characteristic of 
an ownership-reversion. In BOT projects, the government has used such an incentive system as minimum revenue 
guarantee(MRG) agreement to attract the private’s participation. Although this agreement turns out critical in success of 
BOT project, there still exist problematic issues in a financial feasibility analysis since the traditional capital budgeting 
theory, Net Present Value(NPV) analysis, has failed to evaluate the contingent characteristic of MRG agreement. The 
purpose of this research is to develop real option model based on option pricing theory so as to provide a theoretical 
framework in valuing MRG agreement in BOT projects. To understand the applicability of the model, the model is 
applied to the example of the BOT toll road project and the results are compared with that by NPV analysis. Finally, we 
found that the impact of the MRG agreement is significant on the project value. Hence, the real option model can help 
the government establish better BOT policies and the developer make appropriate bidding strategies. 

Keywords: NPV Analysis; Real Option Analysis; Minimum Revenue Guarantee(MRG); Build-Operate-Transfer(BOT) 
Project Finance 
 
1. INTRODUCTION 

In many countries, limitations on the public funds 
available for infrastructure have led governments to 
attract the private to take part in long-term contractual 
agreements for financing, constructing and operating 
huge infrastructure projects. In these projects, 
shareholders often try to follow specific scheme, which is 
called project finance, where they just can put little equity 
and the project's continuation solely relies on direct cash 
flows coming from the project itself to cover operating 
and financing costs. Since risk evolution in these projects 
is generally complicated so that the investor conducts 
proper risk analysis, the public and the private may 
incorporate diverse features to hedge risks they may face. 
Among the various ways to accomplish these PPP 
projects, Build-Operate-Transfer(BOT) is one of the most 
frequently used types due to the characteristics of a 
shared-ownership between the public and private. 

Basically, BOT scheme is implemented following risk 
and return negotiations among the government, project 
company, and lender. Through the bidding stage, those 
members negotiate one another to develop a mutually 
satisfactory project financing structure. Therefore, it is no 
wonder that the effective risk and return sharing scheme 
depends on the financial soundness of the BOT proposal 
since better financial planning provides a higher 
probability that the BOT project is successful. 

In a BOT project, due to its unique characteristics 
coming from the uncertainties of huge project size, long 
concession period, and contractual complexity, there 
should exist asymmetric payoffs, which can not be easily 
assessed based on the traditional capital budgeting theory 
such as Net Present Value(NPV) analysis. Among diverse 
factors which cause asymmetric payoffs in BOT projects, 
such an incentive system as a minimum revenue 
guarantee(MRG) agreement is used to address the 
concerns of the private sector and attract investor 
participation in financing the project(Zhang, 2005). 
Despite the MRG agreement often found in BOT projects, 
the cost to the government of this financial incentive and 
its positive value to the private are not well 
understood(Mason and Baldwin, 1988). Furthermore, it is 
controversial to estimate the exact MRG value that the 
government has to support in order for the developers to 
decide to undertake the project. More seriously, 
unsolicited proposals of the private sector’s participation 
in projects are not uncommon and these factors can cause 
government to be exploited by the BOT developer’s 
proposing an unfair deal. This situation can become 
worse when it comes to the regulatory frameworks of the 
weak host country(Hodges, 2003). The MRG agreement 
adds direct value to the transaction. Developers failing to 
consider the value of guarantee will underestimate the 
investment value, and, if the guarantee value is too large, 
the government over-subsidizes the BOT firm. However, 
because traditional capital budgeting theory, NPV 

ICCEM•ICCPM2009 May 27-30 JEJU, KOREA

800



analysis, can not price the value of the MRG that creates 
an asymmetric payoff, studies on the valuation of 
infrastructure projects based on managerial flexibilities 
have been limited.  

Fortunately, modern financial theory suggests that 
option pricing theory can be applied in the valuation to 
consider various complicated asset features of financing 
schemes and managerial flexibilities. Analogies in a 
process between the BOT financial feasibility evaluation 
and option pricing can help assess the asymmetric payoff 
condition coming from the contingency of the MRG 
agreement. Therefore, the purpose of this research is 
develop real option model based on discrete-time 
approach in option pricing theory so as to provide a 
theoretical framework in valuing MRG agreement in 
BOT project. To understand the applicability of the model, 
the model is applied to BOT toll road project and the 
results are compared with those by traditional capital 
budgeting theories. 

2. THEORIES 

2.1 Traditional Capital Budgeting Theory-NPV 
Analysis 

One of the traditional capital budgeting theories, NPV 
analysis, works well while the risks of an asset remain 
stable as the project goes forward. This valuation method 
is appropriate for investment decisions as to the assets-in-
place if operations guarantee relatively stable cash 
flows(Luehrman, 1998; Myers, 1984).  

Projects often create contingencies such as delaying, 
abandoning or expanding the projects by the management 
decision changes. And, future cash flows may change as 
development proceeds or new information is received. In 
this case, NPV analysis is likely to either underestimate 
or ignore the value of this managerial flexibilities(Amram 
and Kulatilaka, 1999; Trigeorgis, 1999; Dixit and Pindyck, 
1994; Myers, 1984). Once risk is recognized in 
investment based on the NPV analysis, this analysis 
reflects risk through a risk-adjusted discount rate to 
discount the expected cash flows. In a real world, many 
firms classify different risk categories of projects and 
assign each category different rates to reflect the risk 
involved(Trigeorgis, 1999) or use different discount rates 
in different periods to reflect the change of nominal rates 
of interest(Aggarwal, 1993). Even as the NPV analysis 
has been widely used in various industries as an effective 
valuation method, there are also some criticisms that can 
be leveled against it. 

First, the NPV analysis assumes that the cash outflow 
is stable. Even when there are cash outflows in different 
time periods other than time 0, they are assumed to have 
the same risk characteristic as the cash inflows. But, in 
real projects such as large construction projects although 
the future cash inflows are assumed to be certain based on 
the contract, the uncertainty mainly comes from the cash 
outflows. Second, when NPV is applied to construction 
projects, it can not properly evaluate managerial 
flexibility to adjust later decision when, as uncertainty is 
resolved, future events turn out differently from what 
management expected at the beginning of the 

project(Copeland and Antikarov, 2001; Dixit and Pindyck, 
1995; Trigeorgis, 1999). When a project is associated 
with high uncertainty, if an investment requires sequential 
decision-making and if early investment can reveal 
information about the future profitability of the project, it 
deserves to invest even when NPV is negative. When 
mistakenly ignoring the operating and managerial 
flexibilities involved in a project can cause a significant 
underestimation of its value(Mason and Merton, 1985). 
For the evaluation of long-term projects where future 
profitability is uncertain, it is critical to consider the 
associated managerial or strategic options. 

For the reasons above, the real options analysis is 
suggested by many researchers as an effective method to 
incorporate the management flexibilities into the project 
value. In infrastructure projects, design flexibility may let 
the projects be flexible to varying conditions if demand 
risk is involved. Moreover, staged infrastructure projects 
give management the chance to receive new information 
as market become more certain. Even if flexibility adds 
value, because it requires efforts with regard to time, 
money, or complexity, it needs to be appropriately 
assessed. However, the NPV analysis has its limitation to 
evaluate this added value. 

Equation (1) is the basic form of the NPV analysis with 
the concept of discounting the future cash flows at a 
required rate of return(Brigham and Houston, 2004): 
 

∑
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where, 0I is the initial investment, iFCF is the future 
net cash flow after tax at time i , WACC(Weighted 
Average Cost of Capital) is the required rate of return 
used to discount the future cash flow iFCF , and i  is 
the time increment. WACC of the firm or project as 
defined by Equation (2). 
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where E is the equity, eR  is the cost of equity, A is 
total invested capital, dR is the cost of debt, D is the 
debt, and T is the corporate tax. As for the infrastructure 
projects, WACC can be determined based on Equation (2) 
and the obtained WACC is used in Equation (1) to find 
Net present value of the project. WACC stands for a 
company’s weighted average cost of capital reflecting 
cost of debt and cost of equity, and it is employed to 
evaluate projects matching a firm’s existing operating 
assets and associated risks. Thus, determining dR , T, D, E 
and A is not difficult, and the last variable, cost of equity, 

eR , is often estimated by Capital Asset Pricing 
Model(CAPM). eR  is a measurement of the appropriate 
required return that equity investors should expect on 
equity investments, given the level of risk of such 
investments. Equation (3) used to estimate eR  is based 
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on the CAPM developed by Sharpe(1964), which is 
expressed as follows. 
 

)( fmefe RRRR −+= β                        (3) 
 
When it comes to the infrastructure projects, since some 
risk premiums coming from the uncertainties involved in 
the projects such as country or sector risk should be 
added to the cost of equity, actual risk-adjusted discount 
rate used in investment analysis can be greater than eR . 

2.2 Option Pricing Theory 
The option pricing theory developed by Black, 

Scholes(1973), and Merton(1973), for pricing financial 
assets is the building block of this paper. The concept of 
option pricing theory was imported to seek to value 
options on real assets. This theory is based on the 
assumption that stock price follows a log-normal 
distribution, which is called a ‘Geometric Brownian 
motion process’ and has been proven to be appropriate for 
modeling the price of an asymmetric payoff of securities 
(Luenberger, 1998). The uncertainty of the value of real 
asset is reasonably reflected through this diffusion 
process(Brennan and Schwartz, 1984; Dixit and Pindyck, 
1994). Equation (4) describes the diffusion process based 
on Geometric Brownian motion process: 
 

dzdt
S

dS σμ +=                            (4) 

 
where S is the stock price, μ is the instantaneous rate of 
return, 2σ  is the instantaneous variance of the rate of 
return, and dz is a random increment to a standard 
Wiener process. The value of a European call option can 
be obtained by solving the partial differential equation 
derived by Black and Scholes(1973), subject to one 
terminal and two boundary conditions. This Black-
Scholes equation is the mathematical treatment of the 
option pricing framework but it is analytically limited 
because of its mathematical complexity of modeling and 
calculating processes. For this reason, it needs to take into 
account the numerical method such as in this paper. 
Recently, there have been some efforts to evaluate real 
assets based on the option pricing theory. The analyzing 
methodology used in this paper also can be regarded as a 
real option approach based on the option pricing theory. 
 
2.3 Management Flexibility: Asymmetric Payoff 

caused by the MRG Agreement 
Even if the NPV analysis is considered effective 

because of its consistency with the firm’s objective of 
maximizing the shareholders’ utilities, when the 
uncertainty is involved in an investment analysis, the 
discount rate used in this method should be appropriately 
adjusted for related risks based on the CAPM(Copeland 
and Weston, 1988). However, there exits argument that 
the NPV analysis is not appropriate to capture the 
characteristics of the managerial flexibilities in case of 
changing later decisions when the future seems different 
from what management expected. The managerial 

flexibilities provide specific kinds of asymmetric payoff 
relationships identical to the payoff forms of the stock 
options and, therefore, the option pricing theory can be 
effective to price such complicated dynamics of the 
contingencies. Followings are the examples of the 
asymmetric payoffs in financial call and put options. 
 

],0[),( XSMaxtSF ttcall −=                     (5) 
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where 

callF and 
putF are the option values of call and put 

options respectively, 
tS  is the stock price at time t , and 

X  is the exercise price. 
When it comes to the MRG agreement, it can be 

formulated based on the concept of financial put option 
described in Equation (6). The basic idea of the MRG 
agreement is that during concessionaire period if the 
projected cash flow in each year i  satisfies the 
guaranteed cash flow level, which is already signed in the 
BOT contract based on the expected cash flow agreed by 
both of the public and the private, the government does 
not have to pay any MRG to the BOT developer. 
Otherwise, the government should compensate for the 
shortfall in revenue by paying the BOT developer. As an 
MRG value, the government’s obligation to pay in each 
year, 

iSF , would depend on the relative value between 
guaranteed cash flow at year i , 

igCF , and projected cash 

flow at year i , 
ipCF , as shown in Equation (7)(Cheah 

and Liu, 2006). When the guaranteed cash flow is greater 
than the projected cash flow, the government pays the 
difference between the guaranteed cash flow and 
projected cash flow to the BOT developer as the MRG. 
Therefore, the government’s MRG payment at year i , 

iSF , can be estimated based on the asymmetric payoff of 
Equation (7). 
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where 

eFCF  is free cash flow on equity at year i  and 

iSF  is free cash flow difference on equity at year i  
between the guaranteed cash flow and projected cash 
flow in the MRG agreement. Finally, we can find the 
MRG value as follows: 
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where MRG is the present value of the total MRG value 
during concession period at time “0”, r  is the risk-free 
rate, and n  is the years of the BOT concession period. 
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3. METHODS 

Based on the option pricing theories, this paper 
develops a real option model to evaluate the MRG 
agreement in a BOT project. This paper considers the 
financial feasibility of the BOT project at the equity level 
reflecting the dynamics of the project value from the 
developer and the government’s points of views. The real 
option model is tested by the case example of the real 
BOT toll road to see its applicability. The results show 
that the real option model is capable of better representing 
the BOT project situations. Following are the processes to 
construct the real option model and an illustrative 
example in the next section. 
 
Sept 1. Selection of the Underlying Risky Asset and 

Determination of Its Dynamics  
The first step is to choose the underlying asset and 

determine its dynamics. The change of the underlying 
asset value, project value, has an impact on the option 
value since the option value is contingent on the 
underlying asset. When it come to the project finance, as 
the lenders look especially to the forecasted cash flow 
rather than to project assets as collateral for the loan, the 
forecasted cash flow is the main credit support of the 
capital needed(Beidleman et al., 1990). Therefore, this 
paper determines the value of the BOT project based on 
its forecasted cash flow rather than the value of the 
physical asset. The uncertainty of the operating profit is 
the main risk during the operation in a BOT project 
because, in some projects exposed to market competition, 
operating and economic risks could be large(Finnerty, 
1996). The BOT project value is defined as the 
summation of the expected cash flow discounted at an 
appropriated risk-adjusted discount rate for time ‘0’ 
during the operation. As a result, this value is based on 
the future cash flow of the entire concession period. This 
research concerns the stochastic nature of the project 
value on equity, which is subject to change or fluctuations 
due to various market conditions during the operation 
period. To model the dynamics of the project value 
during the operation period, the project value V is 
defined as an underlying asset being assumed to follow a 
geometric Brownian motion process as follows(Dixit and 
Pindyck, 1994): 

 

dzdt
V

dV
σμ +=                         (9) 

 
where V represents the market value of a completed 
project, μ  is the market required rate of return from the 
project, σ  describes the volatility of the rate of return in 
the project value, and dz  is an increment to a standard 
Wiener process. This step helps assume a structure for the 
dynamics and uncertainties of the underlying risky asset 
‘project value.’ 
 

Figure 1 Binomial Tree of Underlying Asset, V  
 

 
 
Step 2. Finding the Initial Project Value “ IV ” 

The initial project value is the present value of the 
expected cash flows which consist of all the revenues and 
expenditures generated from the investment excluding the 
initial investment cost in the project. Then, by 
discounting these future cash flows at a proper discount 
rate to the present, the initial project value can be 
estimated. Because this research focuses on the BOT 
developer and the government’s points of views, the 
dynamics of the project value on equity should be 
captured as follows. 
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where 

iFCFe  is the free cash flow on equity at year i  
and eR  is the cost of equity. iFCFe  is obtained by 
deducting the annual debt service from the annual free 
cash flows. 
 
Step 3. Selection of Volatility “σ ” 

Volatility σ , which is defined as a standard deviation 
of rate of return in cash flow returns, can be obtained 
from the logarithmic value of the cash flow returns. 
Because this value is calculated with historic or future 
estimates of cash flow returns agreed between the public 
and the private, this approach is easy to be simply applied 
in a financial feasibility process and has been widely used 
in estimating the volatility of real assets in many 
industries. In the case example of this paper, it is assumed 
that the volatility is given for the convenience of the 
calculation. 
 
Step 4. Up and Down Movements, “u” and “d” and 

Risk Neutral Probability, “ q ” and “ q−1 ” 
The next is to calculate the value of the up and down 

movement ‘u’ and ‘d’ which will be multiplied with the 
initial project value IV to reflect the dynamics of the 
project value V . Under the binomial tree framework, u, 
d, and R  equal to tre Δ  are needed in order to compute 
the risk neutral probabilities q  and q−1 . By imposing 
u = 1/d, for convenience, the up and down movements 
and risk neutral probabilities can be obtained from 
Equation (11) to (14)(Cox et al., 1979): 
 

teu Δ= σ  (11)   and   ted Δ−= σ   (12) 
 

du
dRq

−
−

=   (13)   and  
du
Ruq

−
−

=−1    (14) 
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where tΔ  is time interval. We alternatively obtain u and 
d by imposing a fixed pseudo probability, q = q−1 = 0.5, 
for the convenience of the calculation. This helps replace 
Equation (13) and (14) with Equation (15) and (16), 
thereby keeping the risk neutral probabilities remain 
constant regardless of the value of σ  or the number of 
time step tΔ (Hull, 1997): 
 

ttr
eu
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⎜
⎝
⎛ −

=
σσ 2

2
1

(15)  and  
ttr
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σσ 2

2
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Step 5. Construct a Reverse Binomial Tree with an 

Underlying Asset “ IV ” 
It is time to construct the binomial tree with IV , σ , u, 

and d taken from above steps. As shown in Figure 1, 
since the binomial tree involves all the likely project 
values considering the uncertainties over time, project 
values in the binomial tree reflect the projected project 
values. The change of this project value over time is as 
follows: 
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At t = 2  
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At t = 3  
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Step 6. Formulation of the MRG Agreement as a Put  

Option 
The MRG agreement can be formulated as a put option 

based on the asymmetric payoff condition in Equation (7). 
However, this paper takes into account the real option 
model at the level of project value as shown in Equation 
(26). If the projected project value at each time step is 
higher than the guaranteed project value, there is not any 
reason for the government to pay the MRG to developer. 
On the other hand, if the projected project value is less 
than the guaranteed project value, there should be an 
MRG for the developers to quit an averse condition where 

they can not obtain the minimum revenue to cover the 
cost, expense, or debt. 
 

]0,
[

iYearatEquityonValuerojectProjectedP
iYearatEquityonValuerojectPGuaranteedMaxMRGi

−
=

(26) 
 
The project value follows a geometric Brownian motion 
process which has two major factors in its value change: 
the term of the fixed rate of return and that of the 
uncertain rate of return, which is randomly selected at 
every time step over time. When the initial project value 
increases at a fixed rate of return over time, this 
represents the dynamics of the project value without 
uncertainty. Therefore, this varying project value is 
assumed as the exercise price. The exercise price is as 
following: 
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Where, nX  is the exercise price at time n . 
 
Step 7. Asymmetric Payoff Condition at Each Node in 

the Binomial Tree 
Throughout the above steps, we finally can construct 

the asymmetric payoff conditions for each time step as 
shown in Figure 2 and Equation (28) to (36). 

 
Figure 2 MRG Option Value and Asymmetric Payoff 

Condition in Binomial Tree 
 

 
 
where, 
 
At t = 1  [ ]0,1 uu VXMaxMRG −=       (28) 

[ ]0,1 dd VXMaxMRG −=       (29) 
 
At t = 2  [ ]0,2 uuuu VXMaxMRG −=       (30) 

[ ]0,2 udud VXMaxMRG −=       (31) 
[ ]0,2 dddd VXMaxMRG −=       (32) 

 
At t = 3  [ ]0,3 uuuuuu VXMaxMRG −=       (33) 

[ ]0,3 uuduud VXMaxMRG −=       (34) 
[ ]0,3 dduddu VXMaxMRG −=       (35) 
[ ]0,3 dddddd VXMaxMRG −=       (36) 

 
Step 8. Implementing the Calculation Backward 

Recursively 
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To find the MRG value, calculation is implemented 
backward recursively from the end of the binomial tree in 
Figure 2. The selected option value based on the 
asymmetric payoff condition at each node is calculated by 
q , q−1 , and R . For instance, while finding the option 
value of 

uuMRG  at time 2 in Figure 2, it needs to 
consider whether an MRG option is exercised or not. 
Because the real option analysis chooses the maximized 
value in each time step, we have to have the larger value 
between when the option is exercised and not exercised. 
This represents the only one is chosen between two 
option values whichever is larger and this process is 
iterated in every time step from the end of the binomial 
tree to present. When the MRG agreement is not 
exercised, uuMRG  is described in Equation (37): 
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And, when being exercised: 
 

[ ]0,2)( uuexerciseduu VXMAXMRG −=           (38) 
 
Finally, since the either one needs to be chosen at time 2 
whichever is larger, its value will be as follows. 
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Through the iterations of this process at every node for 
every time step, the MRG value at time 0 can be 
calculated. Followings show all asymmetric conditions 
and MRG option values at each node for the binomial tree. 
 
At t=2 
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At t=1  
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At t=0 
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4. ILLUSTRATIVE EXAMPLE 

Table 1 describes an illustrative example of the BOT 
toll road system in order to show whether the developed 
real option model can be applicable. In this example, 
capital expenditure, operating expenditure, and average 
toll rate are assumed to annually increase at 3%. 
 
4.1 NPV Analysis 

Market risk premium, MRP in Equation (46), is the 
difference between the return of the market and the risk-
free rate. So, MRP is 5.1%. β , which is a measurement 
of risk for the BOT developer, is 1.335. 
 

%11.12
)335.11.5(%3.5)(

=

×+=×+= βMRPRR fe      (46) 

 
Table 1. BOT Toll Road Case Example 

Capital Structure 
Project Construction Cost $316 M(4 years) 
Debt : Equity = 81.3:18.7 $257 M : $ 59 M 

Debt Senior: 15 years(8.11%) 
Sub: 20 years(20%) 

Capital Expenditure  $3.66 M(Every 5 years) 
Operating Expenditure $2.53 M(Every year) 

Corporate Tax Rate 27.5% 
8.61 M(Year) Initial Traffic Volume 

Traffic Volume Growth 
Rate(Standard Deviation) 2.3(0.989)% 

Average Toll Rate $ 3 
Concession Period 30 Years(From 2008) 
MRG Agreement 80% of Expected Revenue(30 years)

Market Rate of Return 10.4% 
Risk Free Rate 5.3% 
Cost of Equity 12.11% 

Volatility 0.095 
 
Based on the Equation (1) with the information in Table 1, 
we can build the cash flow model of BOT case example 
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as shown in Figure 3 and have the NPV on equity of 
$6.11 million without considering the MRG agreement as 
follows: 
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4.2 Real Option Analysis 
Through the Equation (10), we can calculate the initial 

project value IV  used to reflect the dynamics of the 
underling asset in Equation (48). 
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With the given volatility of 0.095 in Table 1, we have the 
up and down movements based on Equation (15) and 
(16): 
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Now, because we know the values of IV , u , d , q , and 

q−1 , we can construct a binomial tree which reflects all 
possibilities that the project value can have during the 
concession period of 30 years. Table 2 describes the 
parameters needed to build the binomial tree. 

When it comes to the option formulation, the 
guaranteed project value used as the exercise price in a 
put option is defined as a guaranteed project value in 
Equation (27). Since the guaranteed project value at time 
‘0’ is the same as the initial project value multiplied by 
0.8(the MRG agreement says that 80 % of the expected 
cash flow will be guaranteed as minimum revenue), we 
have the exercise price of 50.7382.918.0 =×  at the first 
year of the operation and this will increase at the annual 
rate of 22 0948.0)2/1(053.0)2/1( ⋅−=− σr 049.0=  over 

 
Figure 3. BOT Toll Road Cash Flow Model 

Table 2. Calculated Parameters 
IV (Million, $) 91.82 Volatility 0.0948 

u  1.154 Concession Period (Year) 30 
d  0.955 tΔ  1 
r  0.053 qq −=1  0.5 

 
time during the concession period. The MRG option will 
be exercised whenever the condition to exercise the 
option is met. The last step is to calculate the MRG value. 
The selected option value at each node in the binomial 
tree is calculated backwards recursively using the risk 
neutral probabilities 0.5 and a risk-free rate of 5.3%. In 
Figure 4, we have the MRG value in 2007, which is 
$5.948 million and, by discounting this value to 2004 
with a risk-free rate, we obtain the MRG of $5.075 
million. As results of the analysis, we have the NPV on 
equity of $6.11 million based on the traditional NPV 
analysis without considering the MRG agreement and, by 
the real option model, the MRG agreement value, $5.075 
million which accounts for 83.06% of NPV on equity and 
8.60% of initial equity investment respectively. 

5. CONCLUSIONS 

The MRG agreement is an important concern for both 
of the BOT developer and the government. Through this 
paper, a binomial real option model is developed to seek 
to evaluate this agreement. The conclusions drawn from 
this paper are as follows. First, the MRG value obtained 
through the real option approach has significant impact 
on the static NPV on equity in BOT case example. 
Therefore, the BOT developer does not fully assume the 
operational risk should things go wrong. Second, the 
negotiation process associated with the MRG agreement 
is critical because it directly affects the MRG value. 
While most of the input variables are deterministic, the 
exercise price that the government and the BOT 
developer can decide through the negotiation process is 
the only controllable factor. In addition, because the 
exercise price determined by a certain percentage of the 
expected project revenue depends on the MRG agreement, 
the negotiation process for the MRG agreement should be 
carefully taken into account. Finally, the developed model 
seems to be relatively easier for the management to use in 
the practical world as opposed to the Black-Scholes 
equation because it is derived from simple numerical 
framework and not from a set of complicated 
mathematics. It may be available for BOT project 
members who are already familiar with the algebra level 
of the NPV analysis. Moreover, due to the simplicity of  
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Figure 4. MRG Option Value of the BOT Toll Road 

 

the binomial model in formulating the complex 
management flexibilities, to model the MRG agreement 
as an option may be easily applied to other management 
flexibilities in BOT contracts through proper 
modifications. Even if there have been some research as 
to the issue of the BOT project valuation by the real 
option approach, we still have some open issues which 
mainly arise from the characteristics of the BOT project 
itself. However, in a real world, since there may be more 
diverse and complex managerial flexibilities which are 
likely to be formed as asymmetric payoff conditions, 
efforts to identify, formulate, and evaluate these possible 
contingencies are necessary. 
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