GREENING ENGINEERING AND CONSTRUCTION EDUCATION: STRATEGIC ENTRY POINTS FOR SUSTAINABILITY IN EXISTING CURRICULA

Annie R. Pearce¹ and Yong Han Ahn²

¹ Assistant Professor, Myers-Lawson School of Construction, Virginia Tech, Blacksburg, VA ² Ph.D. Candidate, Myers-Lawson School of Construction, Virginia Tech, Blacksburg, VA Correspond to <u>apearce@vt.edu</u>

ABSTRACT: This paper presents an overview of six strategic entry points for sustainability in the context of the construction/engineering curriculum. It compares the pedagogical costs and benefits of each approach and shares lessons learned from experiences at two leading public American universities: Georgia Institute of Technology and Virginia Polytechnic Institute. The paper discusses opportunities in terms of two perspectives on the pedagogy of sustainability: Stealthy Sustainability and Flagrant Sustainability, as part of a strategy of diffusion and routinization of this innovation within existing curricula. The paper concludes with a discussion of considerations that should be taken into account when evaluating the potential for sustainability in new educational contexts.

Keywords: Sustainability; Engineering Education; Construction; Pedagogy

1. INTRODUCTION

Interest is growing around the world regarding the principles and practices of sustainable construction [1–5]. This interest is being driven by increased recognition of the responsibility of the construction industry for significant social, economic, and environmental impacts, even as it strives to meet the needs of a diverse and growing population. In parallel, the drivers for incorporating sustainability as part of construction and engineering education are many and growing [6-8]. Policy initiatives at the federal, state, and local sectors are also contributing to this growth [9-11], and research addressing common barriers to sustainability and sustainable construction is flourishing [12–14].

There has been considerable attention directed toward pedagogical reform and evolution to support sustainability in engineering education in general [15-23], and construction-related education specifically [4, 5, 8, 15, 24-43]. As colleges and universities seek to evolve their curricula and programs to respond to this opportunity, the challenge is to find ways to increase the sustainability-related knowledge and skills of students in the context of an already full palette of educational requirements. The most common tactic, development of new elective courses, not only increases teaching loads and competes with existing courses in the curriculum, but it also isolates the concept of sustainability pedagogically and increases the perception that it is an optional specialty rather than an essential concept for all graduates. How can students most effectively learn the sustainability skills and information they need to know to be successful in today's industry? Where are the most strategic entry points in construction and engineering curricula to introduce these concepts?

1.1 Teaching Sustainability –Opportunities

While there is general support for the idea of incorporating sustainability as part of higher education curricula, agreement is lacking as to the best way to do so [44-45], and a variety of pedagogical challenges exist that are unique to the concept [14, 17]. To be effective, the literature suggests that pedagogical approaches for teaching sustainability-related concepts

should incorporate inquiry, experience, and reflection as an integral part of instruction [31, 38, 46-50] and can benefit from being situated within the context in which the concepts will be used [29, 51-52] rather than as isolated curricular elements [31, 53]. Jucker [52] and Sterling [54] also advocate for selfdetermination in learning about sustainability, where students are empowered to take responsibility for their own learning experiences. Brunton [47]identifies four of effective attributes integration of sustainability concepts as part of teaching and learning:

- Full integration of sustainability concepts into the curriculum
- Student-centered activities and assessments that reward critical thinking and reflective learning
- Trans-disciplinary teaching and learning
- Teaching that emphasizes that sustainability is an ongoing process without hard and fast answers.

A key barrier to incorporation of sustainability in engineering education, however, is the already full curriculum in traditional engineering and construction programs [5, 26, 55-56] and concern that embedding sustainability within existing degree programs may displace core subject matter [44]. Integration of sustainability within existing curricular elements is thought to be more effective than adding stand-alone treatments [27, 30], although some educators perceive there to be a conflict between core programs and sustainability content [44]. Moreover, some studies suggest that sustainability remains marginal in existing curricula [32, 57], and where included, is more due to the "enthusiasm of individual academic staff, rather than a structured approach" [58]. Lack of value or priority given to sustainability. often evidenced by lack of resources allocated for change, is also a significant barrier [31]. Rigid disciplinary boundaries in traditional educational programs impede sustainability education, which requires the ability to integrate inputs from multiple disciplines [53, 59, 60]. Sustainability, at least in some disciplines, is sometimes viewed by educators in terms of curriculum content rather than employed, with perceptions of pedagogy sustainability as being distinct and disparate from the rest of curricular content [44, 61].

1.2 Desirable Sustainability Skills and Competencies for Engineering and Construction

Increased attention to sustainability bv professional organizations and accrediting boards has raised awareness about the concept in higher education. Sustainability receives prominent treatment in the American Society of Civil Engineers' Body of Knowledge for the 21st *Century* [62], with recognition as a specific technical outcome and as an overarching concept for other foundational, technical, and professional outcome categories such as social sciences, contemporary issues, and public policy. The BOK 2 report also highlights sustainability as being related to ABET program criteria outcomes. This recognition of the importance of sustainability to civil engineering practice builds on ASCE's commitment to sustainability as an ethical obligation [63] and its affirmation of the leadership roles and responsibilities of engineers in achieving sustainable development [64]. Within the construction domain, the American Council for Construction Education also includes environmental sustainability-related or coursework as part of its construction science and project planning accreditation requirements [8]. In addition to basic sustainability literacy [28, 34, 58], among the competencies identified by professional bodies and in the literature as being important for sustainability education for engineers are:

- Ability to communicate and solve problems effectively with people from other disciplines and cultures [30-31, 33, 38, 48, 53, 58]
- Ability to decide and competence to act in ways that favor sustainable development; having an attitude of care or stewardship; self-efficacy [14, 18, 21, 28, 32, 34, 38, 53, 58]
- Understanding the influence of culture and context on attitude toward sustainability, being able to contextualize knowledge, and valuing diversity [14, 20-21, 38, 52]
- Ability to understand the complexity of real world problems, differentiate between problems and symptoms, tolerate uncertainty and ambiguity, and resolve conflicts [45, 58]
- Ability to think holistically, comprehend interrelatedness, and search for integrated solutions [18, 20-21, 28, 31, 33, 45, 53-54]
- Ability to challenge dominant ideology [45, 52, 58]
- Awareness of the role of humans within a larger systems context, and humility regarding current state of knowledge [16, 31, 53]

- Ability to expand the scale of thinking in spatial, temporal, biological, and intellectual terms; breakthrough or lateral thinking in the context of complexity [16, 45, 62]
- Ability to evaluate impacts and manage tradeoffs between technological, ecological, human, and economic elements [17, 31, 34, 38, 57, 60, 65]

These skills and competencies fit well with the likely requirements for future engineering and construction professionals [15, 30] and leads to the question of how best to achieve student learning of these skills given the attributes and constraints of current pedagogy.

2.0 PEDAGOGICAL APPROACHES

The approaches to teaching and learning about sustainability are as varied as the institutions and programs that employ them. For the purposes of this paper, sustainability-related curriculum initiatives at two leading U.S. institutions help to illustrate the spectrum of pedagogical approaches to this topic.

2.1 The Georgia Tech Experience

The Georgia Institute of Technology (Georgia Tech) was one of the early innovators in sustainability education in the U.S. and began its work toward curricular transformation in the early 1990's. This work was fueled by grants from the General Electric Foundation and the National Science Foundation aimed at exploring new ways to incorporate sustainability into the engineering curriculum [66]. While Georgia Tech's approach has evolved over the nearly twenty years in which it has been involved in sustainability education, formal and systematic integration of sustainability into engineering education began in 1993 with the development of an integrated three-course sequence in sustainable development and technology that was cross-listed across all engineering departments. These original courses provided students with an overview of the core concepts of sustainability and the tradeoffs among its various dimensions - sociocultural, economic, and ecological - from a technology perspective. The initial overview course was followed by a case study course and a sustainable systems course, and was eventually supplemented by a fourth Sustainable Problem Solving Laboratory course that provided students with a hands-on experience in the application of sustainable principles to the solution of an engineering problem.

These initial courses were ultimately phased out over time as sustainability became more integrated thoroughly throughout the engineering and other curricula at Georgia Tech. Today, Georgia Tech's vision for sustainability education includes a broad spectrum of programs ranging from new degree programs and certificates to internships and international experiences² with additional efforts in K-12 education and executive education. Over 100 courses have an emphasis in sustainability across all colleges at Georgia Tech³, and degree concentrations and focused projects are available in multiple areas of study.

2.2 The Virginia Tech Experience

Georgia Tech, Virginia Polytechnic Like Institute and State University (Virginia Tech) was also an early innovator in the field with a focus on green engineering. In 1992, five faculty members and administrators in Virginia Tech's College of Engineering embarked on a quest to start a program to ensure that "every Virginia Tech engineering graduate had an understanding of the environmental and societal ramifications of engineering activities" [67]. One of the first outcomes of the program was a concentration (now a minor) in green engineering including two core courses in green engineering, two in-major green courses, and two green courses from other disciplines.

Today, the list of courses pre-approved for students pursuing the Green Engineering Minor is over seventy-five and growing, with a number of courses that also meet students' core curriculum requirements for liberal arts and humanities⁴. A number of other courses at the graduate and undergraduate levels also have precedent for approval as part of the Green Engineering Minor. The curriculum impact of sustainability has also expanded past the College of Engineering to include all undergraduates. Students with an interest in sustainability can participate in a focused Earth Sustainability clustering of their core curriculum courses. Now in its second two-year cycle, the

2

http://sustainable.gatech.edu/concept_embody/

http://www.gatech.edu/greenbuzz/education.htm

http://www.eng.vt.edu/green

Earth Sustainability program ⁵ has grown exponentially and continues to expand. Sustainability initiatives encompass the entire campus, ranging from urban planning students calculating campus carbon footprints in their environmental studio to building construction students participating in sustainable project management courses that involve service learning projects for schools in Belize. Twentynine student organizations participate in the university-wide Environmental Consortium and have played a major role in achieving change in university operations and strategic planning. The role of sustainability at Virginia Tech continues to grow with the upcoming release of the Virginia Tech Climate Action Commitment and Sustainability Plan, which will lead the university toward becoming climate neutral by 2050 and transform the way it achieves its mission in the future.

2.3 Stealthy vs. Flagrant Sustainability

Given the variety of initiatives for incorporating sustainability as part of the university mission, operations, and curriculum, how to incorporate sustainability as part of pedagogy can be a complex question. A spectrum of strategies can be defined regarding how to approach the task of sustainability integration, with the extremes of the spectrum defined as "stealthy" and "flagrant". In this context, the stealthy sustainability extreme represents completely transparent integration of the concept as part of curriculum, the where students learn sustainability concepts without even realizing they are doing so. At the other end of the spectrum, flagrant sustainability initiatives are completely visible and labeled specifically as such, and at their most extreme may include complete sustainability-based degree programs (e.g., James Madison University's Sustainable Engineering degree) or even schools (e.g., Arizona State's School of Sustainability). Which of these approaches best meets the aim of facilitating student learning of critical sustainability skills? Which best supports the desired outcome of producing students who can create a more sustainable world?

These two schools of thought each have their advocates, and in fact the sustainability initiatives at the two case study institutions fall somewhere in between the two extremes. However, the underlying philosophy driving Georgia Tech's sustainability education efforts ultimately tends toward the stealthy extreme, with its initial three course sustainable engineering sequence deliberately phased out in favor of less obvious sustainability education. The Virginia Tech approach, on the other hand, represents a more flagrant approach with its Green Engineering minor and recognized Earth Sustainability curriculum. Individual efforts at each university fall at various points along the spectrum. How to decide what approach may be most appropriate in other institutional contexts?

3. STRATEGIC ENTRY POINTS FOR SUSTAINABILITY IN EXISTING CURRICULA

Based on experiences at the case study institutions, this paper identifies six strategic entry points for introducing sustainability into the existing curriculum, described in the following subsections.

3.1 Infiltrate the Core

The first tactic, infiltrating the core, focuses on introducing systematically sustainability concepts into most or all core classes within the core curriculum for a degree. This tactic involves, at a minimum, including a guest lecture or module within each core course to introduce sustainability concepts in the context of that course, with complexity of sustainability concepts building over time in parallel to the knowledge and skills being built in the core curriculum. More extensive infiltration may involve adding sustainability components to major projects or assignments, again, with complexity increasing over time. This tactic has been undertaken at Virginia Tech as part of the B.S. in Building Construction curriculum, with sustainability-related guest lectures and projects in the major core courses culminating in a strong sustainability component in the senior capstone design-build studio project.

In terms of stakeholder commitment, successfully employing this tactic requires that all faculty teaching core courses in the curriculum must be in alignment with the goals of the program. Additionally, at least one specialist is required to work with core faculty to identify areas where sustainability can be included, and to develop and deliver the sustainability-specific lectures or modules in each course. Coordination across the courses to

⁵ <u>http://www.uccs.ceut.vt.edu</u>

ensure that student exposure and skill development increases over time is also useful. Faculty alignment can be facilitated by providing resources for training and curriculum development in the form of curriculum development grants to purchase materials and supplies, attend conferences or training events, or buy summer salary time to review and enhance existing course materials.

3.2 Add Electives

The second tactic for integrating sustainability into existing curricula involves developing new technical or general electives on sustainabilityrelated topics. Elective courses on sustainability can be either survey courses with a broad perspective on sustainability as it relates to the discipline, or focus on discipline-specific aspects of sustainability. This tactic can be undertaken independently of the rest of the curriculum and requires only an interested faculty member who can convince the department chair and curriculum committee that sustainability is a topic worthy of further study. However, it also suffers from potential vulnerability if the faculty champion loses interest or becomes unavailability, and it competes with other elective courses for limited slots in the existing curriculum. Such courses may be perceived by other faculty as a drain on the pool of students who take electives, and they necessarily add to the teaching load of the faculty who teach them and/or displace other courses faculty may be teaching. Initiatives such as the Center for Sustainable Engineering (http://www.csengin.org) faculty workshops, sponsored by the National Science Foundation in the United States, can provide guidance, resources, and incentives to faculty who are interested in developing new elective courses for sustainable engineering curricula.

Both at Virginia Tech and Georgia Tech, this tactic has been applied as part of the construction curriculum at the graduate level. Virginia Tech has two graduate-level elective courses in Sustainable Facility Systems and Sustainable Civil Infrastructure Systems, which are also open to upper level undergraduates. Tech was the first Georgia graduate construction program in the U.S. to require all construction engineering and management students to take а core course in Environmentally Conscious Design and Construction, and additional elective courses

are also available [39-40].

3.3 Coordinate Complementary Courses

The third tactic for integrating sustainability into existing curricula involves stringing together complementary courses into larger programs that recognize student focus on the topic of sustainability. Courses included in this program may be either new type of sustainability-focused courses or existing courses with topical relevance. The Green Engineering Minor and the Earth Sustainability Core at Virginia Tech are both examples of this type of program. As additional sustainabilityrelated courses come online in various disciplines, they can then be added to the set of courses that qualify a student for a minor, certificate, or other similar recognition of the focus area.

This tactic requires coordination among faculty and college or university-level approval in order to be successful. Even if they do not actively contribute to larger program-level coordination, individual faculty teaching courses included in the larger program must be prepared to take on additional students from different disciplines if their course becomes listed as a qualifying course within the larger program. While this may be an asset from a learning standpoint for students in the class, it may also represent a liability for the offering department if course loads increase and either displace existing students or require additional teaching assets due to course demands. This tactic, while taking maximum advantage of existing assets at the university, also requires crossing disciplinary and departmental boundaries to achieve coordination and approval.

3.4 Sprinkle Sustainability Throughout

The fourth tactic is a variation on previous tactics and involves introducing sustainability into existing courses through new data sets for existing parts of the course. This tactic can be undertaken by any willing faculty and requires only the need to rework existing problem sets with new data. Courses that lend themselves to this approach include basic mathematics and science, statistics, economics, and liberal arts/humanities. For instance, students taking a writing or speech course may be asked to compose a writing assignment or presentation on a sustainability-related topic. Students studying mathematics or statistics may use a data set about levels of greenhouse gas concentrations to study analytical techniques in their problem sets. Even basic engineering courses such as surveying, soil mechanics, or statics can incorporate sustainability-related examples or problem frames as part of student problem sets or in-class examples. At Virginia Tech, this tactic has been successfully applied to the construction internship-for-credit course option in Building Construction. In this course, students receive course credit for their work in industry in exchange for collecting and analyzing data about sustainability innovations being undertaken by their employers [68-69].

This tactic requires a relatively low investment of resources, although it requires the interest and cooperation of each individual faculty member in adjusting course materials. Similar to Tactic 1, it may be facilitated through the use of curriculum development grants to purchase materials and supplies, attend conferences or training events, or buy summer salary time to review and enhance existing course materials. External grants may also be available to support such efforts through programs like the National Science Foundation's Innovations in Engineering Education. Curriculum, and Infrastructure (IEECI) or Course, Curriculum, and Laboratory Improvement (CCLI) Programs.

3.5 Provide Opportunities Outside the Classroom

The fifth tactic focuses providing on opportunities outside the classroom for students to engage in projects that benefit the community or world at large. This tactic is similar to others in that it can involve modification of existing courses to include service-learning components, but it can also be undertaken outside of the existing curriculum as well. Any enthusiastic faculty member or student group can undertake this tactic. Depending on the scope and nature of the opportunity, it may also require leveraging external resources as well. An example of this type of tactic is the Solar Decathlon (http://www.solardecathlon.org), a national competition sponsored by the US Department of Energy where interdisciplinary student teams compete against other universities to design, construct, and operate the most "attractive, effective, and energyefficient solar-powered house". Similar competitions exist in other disciplines as well, including solar vehicle competitions in which both Virginia Tech and Georgia Tech participate. This tactic can also be undertaken on a more local or individualized scale as well. Examples of such programs include the Sustainable Orphanage Project at Georgia Tech [70] and various service learning projects at Virginia Tech [71-72].

3.6 Integrate Campus Operations

The sixth tactic represents an integration of prior tactics in the context of an institution's campus as a living laboratory. The aim is for students to learn while doing useful things that benefit the campus and community of which they are a part. This tactic can be done on a micro scale (e.g., using a building's energy consumption data as part of a class exercise), a macro scale (e.g., performing a full-scale carbon footprint analysis of the campus and community and developing a plan to become carbon neutral), or any level in between. Both of the aforementioned extremes have been implemented at Virginia Tech as part of sustainability learning, and the latter has involved not only students and faculty but also independent student groups, facilities staff, the local town council, and the university administration. To be truly successful, this tactic requires interested faculty, committed facilities staff, and supportive leadership.

Several potentially significant barriers, including existing policy and budgets if dealing with a public university, can impede this type of effort. Building synergistic relationships with facility careful staff requires cultivation and management on the part of faculty to avoid overwhelming already busy university employees with enthusiastic student requests. The involvement of a centralized sustainability office can provide considerable assistance in coordinating requests and archiving information for use in classes. Other potential barriers include lack of interoperable or easily available data and concerns regarding proprietary or competition-sensitive data such as contractor bids and detailed design documents.

If carefully designed, involvement of students can benefit facility staff by enabling different types of data analysis and design/implementation review than would ordinarily be done within the traditional facility delivery process. Current efforts at Virginia Tech, for instance, include involving students in the development of documentation for LEED Certification of new facilities at Virginia Tech and in value enhancement reviews of project documents. Other institutions such as Penn State University and the University of Alabama also have programs in which facilities departments provide formal funding for graduate fellowships to manage and implement these programs [73].

4. RECOMMENDATIONS: SUSTAINABILITY IN NEW EDUCATIONAL CONTEXTS

Each of the six tactics identified here has been demonstrated with varying degrees of success at the two case study institutions, and each has its pros and cons. To evaluate what may work best in new educational contexts, the first step should be to evaluate the existing organizational context for intervention. Core questions to be asked as part of this initial evaluation focus on understanding the status quo, the desired end state to be achieved, and the resources and impediments that define the path between the two. These questions should include:

- <u>Where</u> can sustainability be inserted in the existing curriculum? What opportunities exist?
- <u>Why</u> are we undertaking the initiative? What is driving the change, and what is the desired outcome?
- <u>Who</u> can be counted on as a change agent? Who will potentially get in the way? Who is already working in this area or complementary areas?
- <u>What</u> other initiatives can be harnessed or leveraged? What resources can be tapped? What is already being done?
- <u>When</u> should the transformation be finished? What is the timeline?

After the organizational context, objectives, and resource base have been established, the set of possible alternatives for curriculum integration can be defined and evaluated based on the six strategic entry points identified earlier.

Perhaps the most important of these lessons is to recognize and celebrate existing initiatives wherever possible. Often, the context for sustainability integration in a university setting involves scarce resources, overloaded faculty, and competing demands. Building on the successes of sustainability entrepreneurs who are already working toward the same goals is preferable to alienating these valuable assets by failing to acknowledge their work. However, to do so, it is essential to have a comprehensive inventory of what has already been accomplished. This task is often made more difficult by varying definitions of what sustainability means and what falls within its

scope. Comprehensive inventories of existing courses and related research were undertaken multiple times at Georgia Tech using methodologies ranging from university-wide faculty retreats and charrettes to individual interviews of faculty by a research team using a snowball sampling method [74]. These inventories can serve as examples for other institutions seeking to evaluate their own starting point.

Which of the two approaches – stealthy or flagrant – is better? Experiences at Virginia Tech and Georgia Tech suggest that elements of both can be helpful in various stages of sustainability implementation. With the emergence of third-party accreditations for individuals such as the LEED Accredited Professional designation, the emergence of university-level benchmarks such as the Sustainability Report Card, and national college or department-level benchmarks such as the CSE Benchmark Study of engineering programs

[75], industry now has a variety of means by which to assess sustainability knowledge of students. The effect these metrics may have on externally recognizable sustainability programs at universities remains to be seen. For instance, in the construction industry, increased interest in sustainability capabilities of graduates may lead to the growth of more flagrant sustainability programs in construction curricula [1-2, 24]. Ultimately, a curriculum where sustainability is so integral as to be completely transparent may be necessary to produce engineers and constructors who can design and build a truly sustainable world. The alternatives for curricular modification presented in this paper will serve as a means to that end.

REFERENCES

[1] Ahn, Y.H. and Pearce, A.R. (2007). "Green Construction: Contractor Experiences, Expectations, and Perceptions," Journal of Green Building, 2(3), 106-122.

[2] Ahn, Y.H. and Pearce, A.R. (2009). "Green Construction: U.S. Contractors' Status and Perceptions," Proceedings of the International Conference on Construction Engineering and Management/Project Management (ICCEM-ICCPM 2009). Jeju, Korea, May 27-30.

[3] Myers, D. (2005). "A review of construction companies' attitudes to sustainability," Construction Management and Economics, 23(8), 781-785.

[4] Nobe, M.E.C. and Dunbar, B. (2004). "Sustainable Development Trends in Construction," ASC Proceedings

of the 40th Annual Conference, Brigham Young University, Provo, UT, April 8-10.

[5] Siddiqi, K.M., Chatman, D., and Cook, G. (2008). "The Role of Education and Industry towards More Sustainable Construction," International Journal of Environmental Technology and Management, 8(2/3), 310-321.

[6] Vanegas, J.A. and Pearce, A.R. (2000). "Drivers for Change: An Organizational Perspective on Sustainable Construction." Proceedings, Construction Congress VI, February 20-22, Orlando, FL, 406-415.

[7] Rydin, Y. and Vandergert, P. (2006). Sustainable Construction: the social science research agenda. LSE SusCon Project, London School of Economics, London, UK.

[8] Tinker, A. and Burt, R. (2004). "Greening' the Construction Curriculum," International Journal of Construction Education and Research, 1(1), 26-33.

[9] Pearce, A.R., DuBose, J.R., and Bosch, S.J. (2007). "Green Building Policy Options in the Public Sector," Journal of Green Building, 2(1), 156-174.

[10] Keysar, E. and Pearce, A.R. (2007). "Decision Support Tools for Green Building: Facilitating Selection Among New Adopters on Public Sector Projects," Journal of Green Building, 2(3), 153-171.

[11] DuBose, J.R. (1994). Sustainability as an Inherently Contextual Concept: Some Lessons from Agricultural Development. Unpublished M.S. Thesis, School of Public Policy, Georgia Institute of Technology, Atlanta, GA.

[12] Pearce, A.R. (2008). "Sustainable Capital Projects: Leapfrogging the First Cost Barrier," Civil Engineering and Environmental Systems, 25(4), 291-301.

[13] Pearce, A.R. & Fischer, C.L.J. (2002). Sustainability Barriers and Barrier Breakers: A Resource Guide. Sustainable Facilities & Infrastructure Program, SHETD/EOEML, Georgia Tech Research Institute, Atlanta, GA.

[14] Sibbel, A. (2009). "Pathways towards sustainability through higher education," International Journal of Sustainability in Higher Education, 10(1), 68-82.

[15] Fouger, X. (2008). "The Twenty-first Century Grand Engineering Education Challenge," Journal of Engineering Education, 97(3), 241.

[16] Lemkowitz, S.M., Bibo, B.H., Lameris, G.H., and Bonnet, J.A.B.A.F. (1996). "From Small Scale, Short Term to Large Scale, Long Term: Integrating 'Sustainability' into Engineering Education," European Journal of Engineering Education, 21(4), 353-386.

[17] Lourdel, N., Gondran, N., Laforest, V., and Brodhag, C. (2005). "Introduction of sustainable development in engineers' curricula: Problematic and evaluation methods," International Journal of Sustainability in Higher Education, 6(3), 254-264.

[18] Orr, D. (1992). Ecological Literacy: Education and the Transition to a Post Modern World. University of New York Press, Albany, NY.

[19] Thom, D. (1996). "Sustainability and Education: To sink-or to swim?" European Journal of Engineering Education, 21(4), 347-352.

[20] Vest, C.M. (2008). "Context and Challenge for Twenty-first Century Engineering Education," Journal of Engineering Education, 97(3), 235-236.

[21] Vanasupa, L., Stolk, J., and Herter, R.J. (2009). "The Four-Domain Development Diagram: A Guide for Holistic Design of Effective Learning Experiences for the Twenty-first Century Engineer," Journal of Engineering Education, 98(1), 67-81.

[22] Woodruff, P.H. (2000). "Educating Engineers to Create a Sustainable Future," Journal of Environmental Engineering, 132(4), 434-444.

[23] Zhang, Q., Zimmerman, J., Mihelcic, J., and Vanasupa, L. (2008). "Civil and Environmental Engineering Education (CEEE) Transformational Change: Tools and Strategies for Sustainability Integration and Assessment in Engineering Education," Proceedings, American Society for Engineering Education Annual Conference, Pittsburgh, PA.

[24] Ahn, Y.H., Kwon, H., and Pearce, A.R. (2009). "Sustainable Education for Construction Students," Proceedings of Associated Schools of Construction Conference, Gainesville, FL, April 1-4.

[25] Ahn, Y.H., Kwon, H., Pearce, A.R., and Wells, J.G. (2009). "The Systematic Course Development Process: Building a Course in Sustainable Construction for Students in the U.S.A." Journal of Green Building, 4(1).

[26] Chau, K.W. (2007). "Incorporation of Sustainability Concepts into a Civil Engineering Curriculum," Journal of Professional Issues in Engineering Education and Practice, 133(3), 188-191.

[27] Cotgrave, A. and Alkhaddar, R. (2006). "Greening the Curricula within Construction Programmes," Journal for Education in the Built Environment, 1(1), 3-29.

[28] Graham, P. (2000). "Building education for the next industrial revolution: teaching and learning environmental literacy for the building professions," Construction Management and Economics, 18, 917-925.

[29] Graham, P.M., Coutts, G.P.L., and Hes, D. (2003). "What the process of delivering 'Sustainable Building' can teach us about Construction Management Education," Proceedings, Smart and Sustainable Built Environment -SASBE 2003, University of Technology Queensland, Brisbane, Australia, November.

[30] Haselbach, L.M. and Fiori, C.M. (2006). "Construction and the Environment: Research Foci for a Sustainable Future," Journal of Green Building, 1(1), 148-157.

[31] Hayles, C.S. and Holdsworth, S. (2007). "Student feedback on courses aimed at greening the curriculum of the built environment disciplines," Proceedings, Learning Together: Reshaping Higher Education in a Global Age. Institute of Education, University of London, July 22-24.

[32] Lewis, A., Sayce, S., and Ellison, L. (2005). Education for Sustainable Development in the Built Environment Disciplines. Centre for Education in the Built Environment, Working Paper No. 9. CEBE, Cardiff, UK.

[33] Mead, S.P. (2001). "Green Building: Current Status and Implications for Construction Education," ASC Proceedings of the 37th Annual Conference, University of Denver, Denver, CO, 169-178.

[34] Murray, P.E. and Cotgrave, A.J. (2007). "Sustainability literacy: the future paradigm for construction education?" Structural Survey, 25(1), 7-23.

[35] Pearce, A.R. and Ahn, Y.H. (2009). "Greening Construction Education: Strategic Entry Points for Sustainability in Existing Curricula," Proceedings of the International Conference on Construction Engineering and Management/Project Management (ICCEM-ICCPM 2009). Jeju, Korea, May 27-30.

[36] Pearce, A.R. and Carpenter, A. (2005). "Sustainable Facilities & Infrastructure Training: Approaches, Findings, and Lessons Learned," Proceedings of the 2005 Mascaro Sustainability Initiative Sustainable Engineering Conference, Pittsburgh, PA, April 10-12.

[37] Pearce, A.R. and McCoy, A.P. (2007). "Creating an Educational Ecosystem for Construction: A Model for Research, Teaching, and Outreach Integration and Synergy," Proceedings, Construction Research Congress, May 6-8, Grand Bahamas Island.

[38] Riley, D.R., Grommes, A.V., and Thatcher, C.E. (2007). "Teaching Sustainability in Building Design and Engineering," Journal of Green Building, 2(1), 175-195.

[39] Vanegas, J.A., Pearce, A.R., and Bosch, S.J. (2002). " Built Environment Sustainability: An Integrated Approach to Education, Research, and Outreach," Proceedings, Engineering Education and Sustainable Development Conference, Delft, the Netherlands, October 24-26.

[40] Vanegas, J.A., Pearce, A.R. and Bosch, S.J. (2002). " An Engineering Undergraduate/Graduate Course on Sustainable Design and Construction," Proceedings, Engineering Education and Sustainable Development Conference, Delft, the Netherlands, October 24-26.

[41] Vanegas, J., Johnson, K., and Pearce, A. (2004). "Toward a Living Laboratory for Built Environment Sustainability," Proceedings of the International Conference on Engineering Education in Sustainable Development - EESD 2004, Barcelona, Spain, October.

[42] Vanegas, J.A. and Pearce, A.R. (2004). "An Integrated Undergraduate/Graduate Course Sequence in Sustainable Facilities and Infrastructure," Proceedings of the International Conference on Engineering Education in Sustainable Development - EESD 2004, Barcelona, Spain, October.

[43] Wang, Y. (2009). "Sustainability in Construction Education," Journal of Professional Issues in Engineering Education and Practice, 135(1), 21-30.

[44] Jones, P., Trier, C.J., and Richards, J.P. (2009). "Embedding Education for Sustainable Development in higher education: A case study examining common challenges and opportunities for undergraduate programs," International Journal of Education Research, doi:10.1016/j.ijer.2008.11.001.

[45] Wals, A. and Jickling, B. (2002). "Sustainability in higher education: From doublethink and newspeak to critical thinking and meaningful learning," International Journal of Sustainability in Higher Education, 3(3), 221-232.

[46] Cortese, A.D. (2003). "The Critical Role of Higher Education in Creating a Sustainable Future," Planning for Higher Education, 31(3), 15-22.

[47] Brunton, K. (2006). "Education for Sustainable Development: principles for curriculum development in business subject areas," Investigations in University Teaching and Learning, 3(2), 36-46.

[48] Moore, J. (2005). "Seven recommendations for creating sustainability education at the university level: A guide for change agents," International Journal of Sustainability in Higher Education, 6(4), 326-339.

[49] Chappell, A. (2007). "Using teaching observations and reflective practice to challenge conventions and conceptions of teaching in geography," Journal of Geography in Higher Education, 31(2), 257-268.

[50] Shriberg, M. (2002). "Institutional assessment tools for sustainability in higher education: Strengths, weaknesses, and implications for practice and theory," International Journal of Sustainability in Higher Education, 3(3), 254-270.

[51] Anderson, J.R., Greeno, J.G., Reder, L.M., and Simon, H.A. (2000). "Perspectives on Learning, Thinking, and Activity," Educational Researcher, 29(4), 11-13.

[52] Jucker, R. (2002). "Sustainability? Never heard of it! Some basics we shouldn't ignore when engaging in education for sustainability," International Journal of Sustainability in Higher Education, 3(1), 8-18.

[53] Haigh, M. (2005). "Greening the University Curriculum: Appraising an International Movement," Journal of Geography in Higher Education, 29(1), 31-48.

[54] Sterling, S. (1996). "Education in Change," Education for Sustainability, Huckle, J. and Sterling, S., eds. Earthscan, London, UK, 18-39.

[55] Dawe, G., Jucker, R. & Martin, S. (2005). Sustainable development in higher education: current practice and future developments. A report for the Higher Education Academy. Available online at: http://www.heacademy.ac.uk/misc/sustdevinHEfinalrepor t.pdf (accessed 15 February 2007).

[56] Velazquez, L., Munguia, N., and Sanchez, M. (2005). "Deterring sustainability in higher education institutions: An appraisal of the factors which influence sustainability in higher education institutions," International Journal of Sustainability in Higher Education, 6(4), 383-391.

[57] McKeown, R. and Hopkins, C. (2003). "EE \neq ESD: defusing the worry," Environmental Education Research, 9(1), 117-128.

[58] Ellis, G. and Weekes, T. (2008). "Making sustainability 'real': using group-enquiry to promote education for sustainable development," Environmental Education Research, 14(4), 482-500.

[59] Lidgren, A., Rodhe, H., and Huisingh, D. (2006). "A systematic approach to incorporate sustainability into university courses and curricula," Journal of Cleaner Production, 14(9-11), 797-809.

[60] Lozano, R. (2006). "Incorporation and institutionalization of SD into universities: breaking through barriers to change," Journal of Cleaner Production, 14, 787-796.

[61] Reid, A. and Petocz, P. (2006). "University lecturers' understanding of sustainability," Higher Education, 51, 105-123.

[62] ASCE – American Society of Civil Engineers. (2008). Civil Engineering Body of Knowledge for the 21st Century: Preparing the Civil Engineer for the Future, 2nd ed. Body of Knowledge Committee, committee on Academic Prerequisites for Professional Practice, American Society of Civil Engineers, Washington, DC.

[63] ASCE – American Society of Civil Engineers. (1996). Code of Ethics. https://www.asce.org/inside/codeofethics.cfm.

[64] ASCE – American Society of Civil Engineers. (2004).
Policy 418: The Role of the Civil Engineer in Sustainable Development, adopted by the Board of Direction, October 19, 2004.

[65] Pearce, A.R. and Maxey, D.E. (2007). "Construction Principles for the Future: A Revised Approach to Teaching the Basics," Proceedings, Construction Research Congress, May 6-8, Grand Bahamas Island.

[66] Georgia Institute of Technology. (1999). Educating Engineers for the Twenty-First Century. Final Project Report, General Electric Fund/National Science Foundation, Georgia Institute of Technology, Atlanta, GA.

[67] Gregg, M. (2005). "Green Engineering: A Multidisciplinary Engineering Approach," Proceedings, American Society for Engineering Education Annual Conference, Portland, OR, June 12-15.

[68] Pearce, A.R. and Fiori, C.M. (2009). "Sustainable Construction Benchmarking: Guidelines and Protocols for Undergraduate Internships," Engineering Pathway, National Engineering Education Delivery System (NEEDS), http://www.engineeringpathway.com.

[69] Fiori, C.M. and Pearce, A.R. (2009). "Improving the Internship Experience: Creating a win-win for students, industry, and faculty," Proceedings, 2009 ASCE Construction Research Congress, Seattle, WA, April 4-7.

[70] Pearce, A.R., Harder, J., Pence, D., and Kowalsky, D. (1997). The Sustainable Orphanage Project: A Layperson's Guide to Collecting Sustainability Data for Built Facilities. Georgia Institute of Technology and Orphanage Outreach, Atlanta, GA. Available online at http://web.mac.com/urbangenesis/iWeb/Products/Other% 20Contributions.html.

[71] Marinchak, M. and Pearce, A.R. (2006). Permeable Concrete: Challenges to Implementation. Final Project Report, BC 5984: Sustainable Facility Systems, Virginia Tech, Blacksburg, VA.

[72] Collier, B. (2006). Scottie's Place: A Case Study on Green Building for Non-Profits. Final Project Report, BC 5984: Sustainable Facility Systems, Virginia Tech, Blacksburg, VA.

[73] Johnson, P.W., Leopard, T., Johnson, P., Gibson, G.E., and Cui, Q. (2007). "On-campus Construction as a Teaching and Research Environment," Proceedings, Construction Research Congress, May 6-8, Grand Bahamas Island.

[74] Pearce, A.R., Bosch, S.J., DuBose, J.R., Carpenter, A.M., Black, G.L., and Harbert, J.A. (2005). The Kresge

Foundation and GTRI: The Far-reaching Impacts of Green Facility Planning. Final Project Report to the Kresge Foundation, Troy, MI, June 30.

[75] Allen, D., Allenby, B., Bridges, M., Crittenden, J., Davidson, C., Hendrickson, C., Matthews, S, Murphy, C., and Pijawka, D. (2009). "Benchmarking Sustainable Engineering Education: Final Report," EPA Grant #X3-83235101-0, U.S. Environmental Protection Agency, Washington, DC.