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Abstract
A discussion of a method that has been used with success in terrain modelling 

to estimate the height at any point on the land surface from irregularly distributed 

samples. The special requirements of terrain modelling are discussed as well as a 

detailed description of the algorithm and an example of its application. 

1. Introduction

   There are a number of possible techniques that can be used for surface interpolation, 
that is, estimating the height at a point given nearby sample heights. Some of the more 
common methods are natural neighbour interpolation, surface patches, quadratic surfaces, 
polynomial interpolation, spline interpolation, and Delauney Triangulation an 
implementation of which is described here. Some such interpolation is often required in 
the display of empirical data, for example, terrain modelling where elevation samples are 
obtained from surveys, meteorology where data is collected from weather stations, 
regional planning using data collection stations, and mesh generation for finite element 
analysis. 
   This paper discusses a technique suitable for terrain modelling but also for other 
applications which have the following characteristics : 

◦ there are regions of high and low sample density. For example, in terrain modelling 
there will generally be a low sample density inside bodies of water and a high 
sample density in the areas of particular interest. 

◦ there may be discontinuities in the surface resulting in samples very close to each 
other on the sample plane but of wildly differing height values. These may be 
natural structures as cliffs and river banks or man-made discontinuities like retaining 
walls. Most smoothing methods do not handle these cases very well especially those 
based on polygonal functions where surface overshoot, oscillation and general 
instability occurs. 

the samples often lie along contours. These may be derived from existing contour maps or 
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from the paths taken by a survey team. This is another aspect of differing sample densities. 

Along the sampling curves there is a high sampling density but perpendicular to the path there 

are no samples until the next path is reached. 

◦ a large number of samples will often need to be handled. The time needs to increase 
modestly as the number of samples increases for a technique to be suitable. Typical 
sample numbers may be from 100 to 100,000. Such large numbers of samples are 
particularly common when automated sampling methods are employed. 

   The technique to be discussed has been used for terrain modelling with success, it 
copes with the above aspects of many terrain data sets, and it readily lends itself to 
grid and contour generation as well as 3D rendering.

Triangulation
   Triangulation involves creating from the sample points a set of non-overlapping 
triangularly bounded facets, the vertices of the triangles are the input sample points. 
There are a number of triangulation algorithms that may be advocated, the more popular 
algorithms are the radial sweep method and the Watson algorithm which implement 
Delaunay triangulation. 
   The Delauney triangulation is closely related geometrically to the Direchlet tesselation 
also known as the Voronoi or Theissen tesselations (Fig. 1). These tesselations split the 
plane into a number of polygonal regions called tiles. Each tile has one sample point in 
its interior called a generating point. All other points inside the polygonal tile are closer 
to the generating point than to any other. The Delauney triangulation is created by 
connecting all generating points which share a common tile edge. Thus formed, the 
triangle edges are perpendicular bisectors of the tile edges. 

Fig. 1 Delauney triangles (thin lines) and associated Direchlet   Tesselations (thick 
lines) for nine generating points. Triangle edges are perpendicular bisectors of the tile 
edges. Points within a tile are closer to the tile's generating point than to any other 
generating point.

   Such a triangulation has many desirable features. It can be shown that a convex 
equilateral formed by two adjacent triangles has a greater minimum internal angle than 
if the equilateral was formed another way. In this sense the triangles are as equilateral 
as possible, thin wedge shaped triangles are avoided. 
   The triangulation is unique (independent of the order in which the sample points are 
ordered) for all but trivial cases. One such case is if four points lie on the corners of a 
rectangle, they may be triangulated in one of two ways. These situation occur rarely in 
real data but if uniqueness is important then a straightforward solution is to perturb one 
or more of the vertices on the offending rectangle. 
   One particular situation where many other techniques perform poorly is when there 
is a mixture of regions of high and low density sampling. Triangulation based methods 
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honor this situation by giving a large number of triangles and hence more detail to the 

highly sampled regions and large triangles, less detail, to the regions with a few 
samples. 
   Discontinuities are handled quite naturally. The surface can have a discontinuity as 
narrow as the sampling process permits, it simply results in near vertical triangular 
facets. Note however that unless special action is taken there can not be two samples 
at precisely the same point on the sample plane but with different heights. This can 
occur with discrete digitizer when digitizing near discontinuities. A perturbation of the 
sample point in the correct direction is usually a satisfactory solution to this problem. 
   An algorithm to implement triangulation can be quite efficient and thus suitable for 
areas with a large number of samples. Furthermore if further samples are obtained at a 
later date they can be added to the already existing triangulation without having to 
triangulate all the samples plus the extra samples. This makes it possible to efficiently 
perform a successive refinement on those areas where more detailed information is 
required. 

2. Algorithm

   At any stage of the triangulation process one has an existing triangular mesh and a 
sample point to add to that mesh. The process is initiated by generating a supertriangle, 
an artificial triangle which encompasses all the points. At the end of the triangulation 
process any triangles which share edges with the supertriangle are deleted from the 
triangle list:
 

Fig. 2(a) New sample point to be added to existing triangular mesh.

   1. (Fig. 2a) : All the triangles whose circumcircle encloses the point to be added are 
identified, the outside edges of those triangles form an enclosing polygon. (The 
circumcircle of a triangle is the circle which has the three vertices of the triangle lying 
on its circumference). 

Fig. 2(b) Triangles whose circumcircle include the new point form an enclosing polygon. 

   2. (Fig. 2b) : The triangles in the enclosing polygon are deleted and new triangles 
are formed between the point to be added and each outside edge of the enclosing 
polygon. 
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Fig. 2(c) New triangular polygons formed from new point to the outside edges of the 
enclosing polygon. 

   3. (Fig. 2c) : After each point is added there is a net gain of two triangles. Thus 
the total number of triangles is twice the number of sample points. (This includes the 
supertriangle, when the triangles sharing edges with the supertriangle are deleted at the 
end the exact number of triangles will be less than twice the number of vertices, the 
exact number depends on the sample point distribution) 
The most significant improvement is to presort the sample points by one coordinate, the 
coordinate used should be the one with the greatest range of samples. If the x axis is 
used for presorting then as soon as the x component of the distance from the current 
point to the circumcircle center is greater than the circumcircle radius, that triangle need 
never be considered for later points, as further points will never again be on the interior 
of that triangles circumcircle. With the above improvement the algorithm presented here 
increases with the number of points as approximately O(N^1.5). 
The time taken is relatively independent of the input sample distribution, a maximum of 
25% variation in execution times has been noticed for a wide range of naturally 
occurring distributions as well as special cases such as normal, uniform, contour and 
grid distributions. 
The algorithm does not require a large amount of internal storage. The algorithm only 
requires one internal array and that is a logical array of flags for identifying those 
triangles that no longer need be considered. If memory is available another speed 
improvement is to save the circumcircle center and radius for each triangle as it is 
generated instead of recalculating them for each added point. It should be noted that if 
sufficient memory is available for the above and other speed enhancements then the 
increase in execution time is almost a linear function of the number of points. 
   An example where the triangulation algorithm described above is used to model land 
surfaces is given in Fig. 3. 

                     Fig. 3  The result of triangulating spot heights. 
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3. Conclusions

It is intuitively more appealing because the tesselations correspond to an area of 
influence about the sample points. Contour maps can be generated directly from the 
triangular facets or from the samples distributed on a rectangular grid. Generating 
smooth surfaces if that is required is also generally easier if gridded data is available. 
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