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분자동역학에 의한 수치해석

Translocation of biopolymers such as DNA and RNA through a nano-pore is an important process in 
biotechnology applications. The translocation process of a biopolymer through an artificial nano-pore in the presence 
of a fluid solvent is simulated. The polymer motion is simulated by Langevin molecular dynamics (MD) techniques 
while the solvent dynamics are taken into account by lattice-Boltzmann method (LBM). The hydrodynamic 
interactions are considered explicitly by coupling the polymer and solvent through the frictional and the random 
forces. From simulation results we found that the hydrodynamic interactions between polymer and solvent speed-up 
the translocation process. The translocation time  scales with the chain length N as . The value of 
scaling exponents( ) obtained from our simulations are  and , with and without 
hydrodynamic interactions, respectively. Our simulation results are in good agreement with the experimentally 
observed value of , which is equal to , particularly when hydrodynamic interaction effects are taken 
into account. 

Key Words : Langevin-dynamics, Lattice-Boltzmann method, Polymer translocation

1 학생회원 , 동아대학교  대학원  기계 공학과

2 정 회원 , 동아대학교  기계 공학과

* Corresponding author, E-mail: yksuh@donga.ac.kr

1. INTRODUCTION

Soft condensed matter is described as the materials 
which are easily deformable by small amount of forces 
due to electrical or magnetic fields, or even thermal 
fluctuations. These substances include collides, polymers, 
gels, foams and number of biological materials. The length 
scales of this type of substances come in mesoscopic 
range (10-09m-10-06m), which is in between 
microscale(less than 10-10m) and macroscale (greater than 
10-03m). Hydrodynamic interactions (interactions with 
solvent molecules) play an important role in simulation of 

the soft matter suspended in a fluid. There is a large 
difference in special and temporal scales between the soft 
matter and solvent molecules. The solvent particles moves 
very rapidly compared to polymers or colloids. For 
example, the diffusion time (relaxation time) of polymer is 
several orders of magnitude larger than the solvent time 
scale (10-12s). If we completely rely on molecular 
dynamics simulation, we have to consider so many solvent 
molecules even for small number of polymer particles and 
also the time scale of simulation is solvent time scale  
and most of the computational time is spent on details of 
the solvent which are of not our concern. To deal with 
this type of problems recently multiscale modeling 
techniques are developed which reduce the computational 
time up to two orders of magnitude. In these techniques 
the solvent is modeled on continuum basis and the 
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polymer is modeled by standard molecular dynamic 
techniques. The polymer and the solvent are coupled by a 
simple dissipative (hydrodynamic) force. There are so 
many mesoscopic methods are available for simulating 
solvent dynamics on continuum basis. Some of them are 
Brownian Dynamics (BD)[1], Dissipative Particle Dynamics 
(DPD)[2], Multiparticle Collision Dynamics (MPC)[3], and 
Lattice Boltzmann Equation (LBE)[4,5]. All these methods 
have their strengths and weaknesses. The advantage of 
LBE over other methods is that the computational cost of 
taking the hydrodynamic interaction effects scales only 
linearly with the length of the polymer.

Translocation of bio-polymer molecules through 
nanometer sized pores in a membrane is the most 
fundamental process in the fields of chemistry and 
biotechnology. This event often takes place in several 
biological processes such as DNA and RNA sequencing, 
proteins transporting trough a cell membrane, transfer of 
virus RNA to the host cells, Gene therapy, gel 
electrophoresis, delivery of drug molecules to their 
activation sites etc. Therefore understanding the 
translocation phenomenon might lead to develop new and 
improved techniques for biological applications. Many 
researchers paid considerable attention in this topic to 
know the underlying physics by theoretically, 
experimentally and numerically. However, still there is a 
scope for further research. Theoretical predictions of 
translocation dynamics are very difficult as there are so 
many factors affecting the entire process. The main factors 
that affecting the translocation process are: interactions 
between monomers in the polymer chain, hydrodynamic 
interactions, driving force (electrical or chemical potential 
difference), concentration gradient of the polymer, pore 
size and polymer size. The main object of this work is to 
know the effect hydrodynamic interactions on translocation 
process. The paper is organized as follows: The details of 
numerical method are given in section 2. The results 
obtained from the simulation of translocation process are 
presented in section 3. Finally, in section 4 the 
conclusions of the present study are drawn.

2. NUMERICAL METHOD

2.1 MODELING THE POLYMER
The polymer is represented by bead-spring model,  

consists of N monomer units (also referred as beads) 
which are connected by N-1 flexible springs. The force 
acting on each bead can be represented by using the 
generalized Langevin equations of motion for bead 

positions  and velocities  for  

(1a)

(1b)

where  represents the total potential energy of 
the system consists of Lennard-Jones potential, Coulomb 
potential, bond potential, and external electric field 
potential etc.  in Eq. (1b) represents the dissipative 
drag force due to the motion of the polymer in a 
continuum fluid, and is given by

(2)

where  is the mass of the bead,  the friction 
coefficient and  the velocity of the fluid evaluated at 
the bead position. If there is no hydrodynamic interactions 
effect, we just set .  in Eq. (1b) is a random 
force due to the thermal fluctuations in the fluid 
environment, which is taken as Gaussian white noise term 
obeying the following properties:

(3)

In Eq. (3) the coupling between the temperature  
and  is a result of fluctuation dissipation theorem (FDT) 
to keep the polymer beads and solvent molecules at the 
same temperature.

The excluded volume effect between bead-bead, and 
between bead-wall are taken by standard 6-12 
Lennard-Jones potential [6],

(4)

truncated at a distance of . Here  is the 
distance between two beads or distance between bead and 
wall molecules,  the length scale, and  the energy 
scale of the system, respectively. The effect of electrostatic 
interactions is not included in the simulations. The 
connectivity between adjacent beads i and j is given by 
harmonic bond stretching potential,
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Fig. 1 D3Q19 (3D with 19 velocity vectors) lattice.

(5)

where  is force constant and  is the 
equilibrium distance between adjacent beads. The effect of 
bond angle potential is ignored as we assume the polymer 
of being flexible in nature.

2.2 MODELING THE SOLVENT
The solvent is modeled by lattice Boltzmann method 

(LBM)[7]. In LBM, the hydrodynamic variables (density, 
velocity) are evaluated from the particle distribution 
functions, , by numerically solving the Boltzmann 
kinetic equation on a discrete lattice mesh. Here  
represents the probability of finding a particle at lattice 
site  and at time t which is moving with discrete 
velocity . The particles move on a regular lattice 
defined by discrete velocity set (i=1,....,b), which is 
chosen such that after the time step , the vector  
is leading to the ith neighbor on the grid. Here we 
worked with a cubic lattice consisting of 19 velocity 
vectors in 3-dimensions (D3Q19 lattice, see fig. 1). The 
evolution of  is governed by generalized lattice 
Boltzmann equation [8]:

(6)

 in Eq. (6) is a collision operator due to 
instantaneous collisions between particles. After collision 
process the populations are relaxed towards local 
equilibrium distribution, , which can be expressed in 

terms of the hydrodynamic variables  and  (the mass 
density) as follows:

(7)

where  are set of known weights which depend on 
the lattice model, and  is the speed of sound in the 
solvent. The last term, , in the Eq. (6) is a result 
of the momentum transfer from the polymer to fluid.

2.2.1 COUPLING OF POLYMER AND FLUID

As the fluid exerts a drag force on each bead of the 
polymer (according to Eq. (2)), an equal and opposite 
force should be applied to the fluid to conserve the total 
momentum. Since the fluid is modeled on the discrete 
grid while the polymer moves continuously, the fluid 
velocity  at bead position should be interpolated from 
the surrounding grid points. We employed simple nearest 
grid-point interpolation technique (trilinear interpolation) to 
obtain fluid velocity at the polymer position, in Eq. (2). 
In addition to the drag force, the random force in Eq. (3) 
should also be given to the fluid to satisfy the fluctuation 
dissipation theorem (FDT). Since the friction and random 
forces are available at the bead positions, we have to 
extrapolate them from the bead positions to the 
surrounding grid points. We used the same interpolation 
function that is used in interpolation of velocity, for this 
purpose. The total force density which is given to the 
fluid is written as:

(8)

Here  is the interpolation function,  is the lattice 
grid spacing, and ng is the mess cell to which ith bead 
belongs. The source term, , in the Eq. (6) can be 
obtained from [9],

(9)

for each fluid population 'i'. Here  is the relaxation 
time. The fluid density, and momentum are obtained from:

(10)
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Fig. 2 Comparison of radius of gyration of a polymer.

Fig. 3 Cross-sectional view of the simulation set-up at the 
center of (a) YZ-plane, and (b) XZ-plane.

The fluid density, and momentum are locally conserved 
in any collision process and the local equilibrium 
distribution functions should also satisfy the Eq. (10).

2.2.2 THERMAL FLUCTUATIONS
Since we are dealing with microscopic scale problems, 

we have to consider thermal fluctuations in the fluid. In 
lattice Boltzmann method thermal fluctuations are included 
by adding stochastic collision operator, , to the left 
hand side part of Eq.6. The fluctuating lattice Boltzmann 
equation can be written as [10]:

(11)

Here  is the random noise term that conserves 
mass and momentum. We can represent the collision 
matrix  in diagonal form if we perform collision 
operation in moment space. Orthogonal basis vectors , 
which are constructed from tonsorial polynomials of lattice 
vectors , are used to transform the distributions  into 
moments (modes) . The non-equilibrium distributions 

, in the collision term can then be 
expanded in moments as, 

(12)

The collision operation can then be performed in 
moment space using linearized collision operator,

 (13)

where  is the eigenvalue, which is depend 
on the relaxation time  of each mode. The Thermel 
fluctuations are take into account by adding random noise 
to Eq. (13),

(14)

here  being the Gaussian random number with zero 
mean and unit variance. The amount of thermal 
fluctuations can be controlled by mass of LB particle, 

. After performing the collision operation 
the back transformation from moments to distributions is 
done by,

(15)

where  is a normalizing factor of each 

mode. 

3. RESULTS AND DISCUSSIONS

3.1 VALIDATION TESTS
Before proceeding to simulation of the translocation 

process of the polymer, our numerical model is verified 
by comparing the radius of gyration of the polymer with 
the power law. The mean square radius of gyration is 
given by,

(16)

with  being the inter-particle distance two 
beads.

The angular brackets indicate an ensemble average. The 
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Fig. 4 Polymer configuration (N=400) of a translocation event  
at different times. The arrow indicates the driving force 
direction.
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Fig. 5 Logarithmic plot of variation of translocation time with 
polymer length. The values of  are obtained from 
linear fit of data points.

 can be related to number of beads N by power law,

(17)

where  is called the Flory exponent. For self-avoiding 
walk (SAW) chains the Flory exponent is 0.588. We have 
computed the radius of gyration  for different bead 
numbers using Eq. (16). To obtain statistically precise 
data, we calculated an ensemble average over 180 
samples. Fig. 2 shows the log-log plot of  vs N. 
The solid line indicates the results obtained from the 
power law(Eq. (17)), while the symbols indicate the results 
obtained from the simulation.

3.2 POLYMER TRANSLOCATION THROUGH A NANO-PORE
Fig. 3 shows the cross-sectional view of simulation 

set-up used in this work. The computations are performed 
in a square channel, which is opened in y-direction. A 
wall is located at the centre of the channel in x, z 
directions. At the centre of the wall a small pore is 
opened, which is of square cross-section.

In simulations all the parameters are given in lattice 

units. For the polymer of length less than 200 beads, the 
dimensions of simulation box are set to be  
in x, y, and z directions respectively and for the length 
over 200 beads the dimensions are . Initial 
position of the polymer is taken randomly from the self 
avoiding random walk algorithm (SARW), keeping the 
first bead position is at the entrance of the pore. Then the 
positions of the remaining beads are allowed to relax until 
it reaches to the equilibrium condition (temperature of 
polymer attains constant value), without hydrodynamic 
interactions (HI). Initial values for fluid velocity and 
density are taken to be zero  and 1 respectively. This is 
then taken as a initial condition for the polymer 
translocation and simulations are carried out with and 
without HI. The boundary conditions for the polymer are 
periodic in y-direction, and the interactions with the solid 
walls are given by Lennard jones potential. For the fluid, 
periodic boundary condition is given in y-direction, and 
standard mid-plane bounce-back scheme is employed at the 
walls.

The size of the pore is taken as 3 and depth is set to 
be 1. At the beginning of the translocation process the 
polymer entirely resides in the left side of simulation box 
as shown in fig. 3. The translocation is then induced by 
applying a constant driving force in y-direction, which 
acting only on the beads that are in the pore region. The 
magnitude of the driving force is chosen such that it 
causes the fast (forced) translocation conditions. In fast 
translocation regime, the translocation time is far less than 
the Zimm time (relaxation time) of the polymer. Figure 4 
shows the configuration of a polymer with 400 beads at 
different times of a translocation event. The arrow 
indicates the driving force direction. The simulation 
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parameters are taken from [11]. The lattice spacing ,  
and LB time step,  are set to be unity. The ratio 
between LB time step and polymer time step is taken as 
50. The driving force is taken as 0.01. The equilibrium 
distance between adjacent beads  is 1.2. The strength 
of random force is controlled by temperature of the fluid, 

, which is equal to  in our simulation. The 
Lennard-Jones potentail parameters, , and  are taken as 
1.5 and  respectively. The force constant of bond 
stretching potential,  is .

To know the nonlinear relationship between the 
translocation time,  vs polymer length, which obeys a 
power law , the simulations are carried out for 
different chain lengths 50, 100, 200, 300, and 400. To 
reduce the statical uncertainty we have taken an ensemble 
average over 10 translocation events for each polymer 
length, with different initial configuration for each event. 
Fig. 5 shows the log-log plot of variation of translocation 
time with length of chain. The power law exponents,  
obtained from our simulations are , and 

, with and without hydrodynamic interactions 
respectively. Our simulation results are in good agreement 
with the experimentally observed value of ,  
[12], especially when the hydrodynamic interaction effects 
are taken into account. 

4. CONCLUSIONS

In this work, we have simulated the translocation 
process of a biopolymer thorough a nanopore in three 
dimensions. The polymer is modeled and simulated by 
Langevin dynamic techniques. The hydrodynamic 
interactions are taken into account by considering the 
solvent effect using lattice Boltzmann method. From the 
results, we obtained a nonlinear relationship between the 
translocation time and polymer length as , 
which is in good agrement with the experimental results. 
If we neglect the hydrodynamic interactions the power law 
relationship is . So we conclude that the 
hydrodynamic interactions play a crucial role in 
translocation process.
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