[초 IM-01] H3+, the New Astrophysical Probe

Takeshi Oka

Department of Astronomy and Astrophysics and Department of Chemistry, The Enrico Fermi Institute, the University of Chicago, Chicago, Illinois, U. S. A.

After atomic hydrogen, H, and molecular hydrogen, H₂, the protonated molecular hydrogen, H_{3}^{+} , is the third hydrogenic astrophysical probe which has been introduced recently. The infrared spectrum needed for its detection was discovered in the laboratory¹ in 1980. The spectrum was discovered in Jupiter^{2,3} in 1989 and in interstellar space⁴ in 1996. The interstellar H_{3}^{+} was first detected in dense molecular clouds⁴ where it had been predicted, but soon detected also in diffuse clouds⁵ where detectable H_{3}^{+} was unexpected. Surprisingly, observations have established that the H_{3}^{+} to H_{2} ratio is 10 times *higher* in diffuse clouds than in dense clouds⁶. Quite unexpectedly, H_{3}^{+} has emerged as a powerful probe to study the diffuse interstellar medium.

 H_3^+ provides four kinds of astrophysical information: the temperature, *T*, the density *n*, the (cosmic ray) ionization rate ζ , and the radial length of clouds *L*. The surprising abundance of H_3^+ in diffuse clouds has revealed that the soft cosmic ray flux is 10 times higher in diffuse clouds than in dense clouds.⁷

 $\rm H_3^+$ is particularly abundant and ubiquitous in the Central Molecular Zone (CMZ), a region of radius ~200 pc near the Galactic center. Observations has led to the discovery of a vast amount of warm ($T \sim 250$ K) and diffuse ($n \sim 100$ cm⁻³) gas in the CMZ^{8.9}. $\rm H_3^+$ has also been detected in an ultra-luminous infrared galaxy IRAS 08572+3915 NW¹⁰. The recent results will be discussed.

- ¹ T. Oka, Phys. Rev. Lett. 45, 531 (1980)
- ² P. Drossart et al. Nature, 340, 539 (1989)
- ³ T. Oka, Rev. Mod. Phys., 64, 1141 (1992)
- ⁴ T. R. Geballe and T. Oka, Nature, 384, 334 (1996)
- ⁵ B. J. McCall, T. R. Geballe, K. H. Hinkle, and T. Oka, Science, 279, 1910 (1998)
- ⁶ T. Oka, Proc. Natl. Acad. Sci. USA, 103, 12235 (2006)
- ⁷ N. Indriolo, T. R. Geballe, T. Oka, and B. J. McCall, ApJ, 671, 1736 (2007)
- ⁸ T. Oka, T. R. Geballe, M. Goto, T. Usuda, and B. J. McCall, ApJ, 632, 882 (2005)
- ⁹ M. Goto, et al. ApJ, 688, 306 (2008)
- ¹⁰ T. R. Geballe, M. Goto, T. Usuda, T. Oka, and B. J. McCall, ApJ 644, 907 (2006)