Fabrication of soluble organic thin film transistor with ammonia (NH₃) plasma treatment

Dongwoo Kim, Doohyun Kim, Keonsoo Kim, Hyoungjin Kim, Hong Choi
Donghyeok Lee and Munpyo Hong*
Dept. of Display and Semiconductor Physics, Korea University, Chungnam, KOREA

TEL:82-41-860-1321, e-mail: goodmoon@korea.ac.kr

Abstract

We have examined the silicon nitride (SiN_x) as gate insulator with the ammonia (NH_3) plamsa treatment for the soluble derivatives of polythiophene as p-type channel materials of organic thin film transistors (OTFTs). Fabrications of the jetting-processed OTFTs with SiN_x as gate insulator by NH_3 plasma treatment can be similar to performance of OTFTs with silicon dioxide (SiO_2) insulator.

1. Introduction

Recently, Organic thin-film transistors (OTFTs) have been researched for many applications such as sensors, smart cards, identification tags, and the display devices including flexible displays [1]. High performance OTFTs has been mostly achieved in topcontact device configuration rather than bottomcontact device configuration [2, 3]. However, topcontact device configuration is incompatible with lithography process due to the sensitivity of organic semiconductors to ultraviolet, electron beam, and chemical wet processes. This limitation makes topcontact configuration undesirable for manufacturing [4]. Bottom-contact configuration source–drain (S–D) electrodes can be easily fabricated by lithography process and thus are much more promising than topcontact configuration for large scale integration and manufacture of OTFTs. In this paper, we have investigated the soluble OTFT through the NH₃ plasma Treatment for the SiN_x as a gate insulator for mass-productions. For enhancement of performance OTFTs, The SiN_x is improved by optimized NH₃ plasma treatment [5].

2. Experimental Procedure

To compare effects of the NH_3 plasma treatment on SiN_x surface, we fabricated bottom contact OTFT devices with circle type source-drain electrode by solution jetting process as shown in Fig.1.

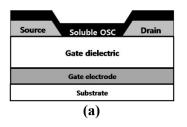


Figure 1. Configurations of (a) bottom-gate & bottom contact structure and (b) circle type source-drain electrode with SiN_x as gate insulator.

The thermally SiO₂ wafer with the total thickness about 3000 Å was prepared. The OTFTs devices are fabricated for a bottom contact configuration on a degenerately doped n+ silicon wafer used as a gate electrode. Also, Chrome (Cr) metal layer as gate electrode was deposited by a sputter with the thickness of 300 Å on galss substrate. SiN_x films were deposited in a parallel-plate plasma enhanced chemical vapor deposition (PECVD) reactor operating at an excitation frequency of 13.56 MHz. The process pressure was maintained at 800 mTorr, the substrate temperature was 300 °C, and the rf power was 300 W. The nitrogen (N_2) , ammonia (NH_3) and silane (SiH_4) gas flow rate ratio are 8:1:2. After SiN_x film deposition with the thickness about 2000 Å, it is annealing by the Rapid Thermal Annealing (RTA) at 300 °C. SiN_x films were treated by the nitrous oxide (N₂O) / NH₃ plasma. The N₂O / NH₃ plasma were generated under the conditions of the working pressure 250 mTorr, the substrate temperature 300 °C, the RF power 50 W and the gas flow rate 100 sccm for 12 min, respectivly. For the formation of circle type source-drain electrodes, Au metal layer was deposited by a thermal evaporation with thickness of 300 Å, and patterned by photo-lithography and wet chemical etching processes; the channel width (W) and length

(L) were defined as 3000 μ m and 5 μ m, respectively. The Poly(3-hexylthiophene) (P3HT) precursor was dissolved in tetralin solvent. This solvent was chosen over chloroform due to its slower evaporation rate, making it more suitable for our home-made jetting system. After jetting the OSC on circle type Au electrodes, the device samples were annealed at 150 °C for 30 min in N₂. The performances of OTFTs were measured by semiconductor parameter analyzer (HP4156C) in dark spaced probe station at room temperature.

3. Results and discussion

The field-effect mobility at $V_D=V_G$ was calculated by

$$I_{D,sat} = \left(\frac{W}{2L}\right) \mu C_i (V_G - V_T)^2 \tag{1}$$

where μ_{fe} is the field-effect carrier mobility, V_T is the threshold voltage, W is the channel width, L is the channel length, C_i is the capacitance per unit area.

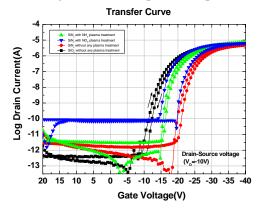


Figure 2. The electric characteristics of OTFTs with various films I_D - V_G , $(W/L = 3000 \ \mu m / 5 \ \mu m)$

Figure 2 illustrates the transfer characteristics of a typical P3HT OTFT on SiO_2 , SiN_x and SiN_x with N_2O / NH3 plasma treatment. In SiO_2 insulator without any plasma treatment, the field-effect mobility of OTFTs with jetting process is about 0.002 cm²V⁻¹s⁻¹. On the other hand, the performance OTFTs using the SiN_x as gate dielectric without any plasma treatment drive as the field effect mobility (μ_{fe}) of 0.002 cm²V⁻¹s⁻¹, the threshold voltage (V_T) of -22.0 V, the sub-threshold slope (S-S) of 0.74 V/dec and the on-off currents ratio (I_{on}/I_{off}) of IO^7 . However, the result by N_2O plasma treatment is inferior to that by bare SiN_x to the effect of damage of N_2O plasma.

In our experiment, the SiN_x with NH_3 plasma treatment drive best results as μ_{fe} of 0.003 cm²V⁻¹s⁻¹,

the V_T of -17.0 V, the S-S of 0.53 V/dec and the I_{on}/I_{off} of $5*10^6$, due to the effect of nitrogen-rich nitride.

Table I. Summary of the electrical parameters for the OTFTs. μ_{fe} is the room temperature field-effect mobility, S is the sub-threshold swing, V_T is the threshold voltage.

Gate Insulator	$\mu_{fe} \atop (cm^2V^{-1}s^{-1})$	S (V/dec)	V _T (V)	$I_{\rm on}/I_{\rm off}$
(a) SiOx	0.002	0.98	-14.0	5*10 ⁷
(b) SiNx	0.002	0.74	-22.0	10 ⁷
(c) SiNx with N ₂ O plasma treatment	0.001	1.30	-21.0	10 ⁵
(d) SiNx with NH ₃ plasma treatment	0.003	0.53	-17.0	5*10 ⁶

4. Summary

P3HT OTFTs on SiNx (i.e., nitrogen-rich nitride) gate dielectric have performance comparable to that of OTFTs fabricated on thermal SiO₂ gate dielectric (average mobility of 0.002 cm²/Vs and on/off ratio of over 10⁷). Consequently, OTFTs on SiNx using NH₃ plasma treatment is similar to performance of OTFTs with SiO₂ insulator. Also, Investigation of lower temperature SiNx using various plasma treatments as gate dielectric for Soluble OTFTs is currently in progress.

Acknowledgements

This research was supported by a grant (F0004012-2009-32) from information display R&D Center, one of Knowledge Economy Frontier R&D of Korean Government and Korea University Grant.

5. References

- [1] C. D. Dimitrakopoulos, P. R. L. Malenfantols, Adv. Mater., **14**. 99 (2004)
- [2] G.R. Dholakia, M. Meyyappan, A. Facchetti, T.J. Marks, Nano Lett. 6 (2006) 2447.
- [3] I. Kymissis, C.D. Dimitrakopoulos, S. Purushothaman, IEEE Trans. Electron Devices 48 (2001) 1060.
- [4] M.M. Ling, Z. Bao, Chem. Mater. 16 (2004) 4824.
- [5] F. M. Li, A. Nathan, Y. Wu and B. S. Ong, Appl. Phys. Lett. 90, 133514 (2007)