LCP 방법에 의한 초고강도 섬유보강 I 형보의 수치해석

Numerical Simulation of UHPFRC I-beam by the Linear Complementarity Problem

한상묵*
Han Sang-Mook

궈이홍**
Guo Yi-Hong

Abstract

This paper presents a numerical simulation of quasi-brittle fracture in UHPFRC I-beam. A linear complementarity problem (LCP) is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form, and the PATH solver is employed to solve the LCP.

요약 이 논문은 초고강도 I 형보의 quasi-brittle 파괴역학적 수치해석을 수행하였다. Non-holonomic rate 형태로 변형경로에 의존하는 경화-연화거동 관계 방정식을 구성하기 위해 linear Complementarity 방법을 사용하였으며, PATH solver 를 사용하여 LCP 방법의 해를 구하였다.

1. Introduction

As ultra high performance fiber reinforced concrete(UHPFRC) exhibits tensile hardening after cracking, the simulation of quasi-brittle fracture in UHPFRC is different from other concrete. Based on the investigation of Tin-Loi and Attard[1], the simulation of fracture in concrete has been extended to model UHPFRC I-beam by including a tensile hardening.

2. Constitutive law

Fracture is simulated through a hardening-softening constitutive law in tension(in Fig.1) and a softening constitutive law in shear(in Fig.2). For UHPFRC, Young's Modulus is 42GPa, compressive strength150Mpa, yielding tensile strength $f_{t} 8 \mathrm{MPa}$, ultimate tensile strength $f_{t}^{\prime} 12 \mathrm{Mpa}$, friction angle ϕ and dilatancy angle $\psi 37^{\circ}$, hardening opening crack-width $\lambda_{t c}^{h} 0.8 \mathrm{~mm}$, ultimate opening crack-width $\lambda_{t c} 1.7 \mathrm{~mm}$, and shear opening crack-width $\lambda_{s c} 1 \mathrm{~mm}$. If the interface generalized force vector reaches the inelastic failure surface shown in Fig.3, the structure generalized force vector Q must satisfy Eq. 1 that is a typical LCP in non-holonomic rate form. H is the

[^0]structure hardening/softening matrix, N the structure normality matrix, and λ irreversible deformation vector.
\[

$$
\begin{equation*}
0 \geq \dot{\varphi}=N^{T} \dot{Q}-H \dot{\lambda} \perp \dot{\lambda} \geq 0 \tag{1}
\end{equation*}
$$

\]

Fig.1Constitutive law for tensile mode

Fig. 2 Constitutive law for shear mode

Fig. 3 Interface inelastic failure surface

3. Example

This is a three-point bending beam with a span of 7.6 m . Fig. 4 shows the simplified cross section and the meshing of UHPFRC I-beam. It can be see from the results of simulation(in Fig. 5 and Fig.6) that the proposed model is fit for the simulation of quasi-brittle fracture in UHPFRC I-beam.

Fig. 4 The simplified cross section and the meshing of UHPFRC I-beam

Fig.5The load-deflection curve

Fig. 6 Ultimate state cracking

4. Conclusions

It can be concluded from the numerical simulation:

1) The tensile hardening after cracking must be considered when defining this model
2) LCP is an effective approach to simulation of quasi-brittle fracture in UHPFRC.

Reference

1. Attard M., Tin-Loi F. Numerical simulation of quasi-brittle fracture in concrete. Engineering Fracture Mechanics, 2005; (72):387-411.

[^0]: * 정회원•금오공과대학교 토목환경공학부 교수• 공학박사
 **금오공과대학교 토목환경공학부 토목공학과 박사과정

