
제32회 한국정보처리학회 추계학술대회 논문집 제16권 2호 (2009. 11)

온톨로지 엔진의 유지, 관리를 위한 체인지 로거

아사드 마소드 가탁, La The Vinh, 이승룡, 구교호
경희대학교

e-mail : {asad.masood, vinhlt, sylee}@oslab.khu.ac.kr, yklee@khu.ac.kr

Change Logger: Towards Ontology Maintenance

Asad Masood Khattak, La The Vinh, Sungyoung Lee, Young-Koo Lee
Dept. of Computer Engineering, Kyung Hee University, Korea

Abstract

To accommodate constantly growing knowledge in scientific discourse that is revised over time by
domain experts, we need to also evolve our ontology. The body of knowledge will get structured and
refined as we develop a deeper understanding of issues. Keeping trail of new changes in semantically
rich and formally sound mechanism has pragmatic advantages for providing the undo and redo facility
and ontology recovery to a previous state. In this research, we have proposed a framework that support
change logging and then using these logged changes for reverting ontology to a previous consistent
state and visualization of change effects on ontology. The system is compared with ChangesTab of
Protégé and the results depict better accuracy for our system.

1. Introduction

Ontologies are formal description of shared
conceptualization of a domain of discourse. Ontology change
management is the solution to the problem of deciding the
modifications to perform in ontology in response to a certain
need for change [1]. Ontology change management is a
complicated and multifaceted task, which has led to the
emergence of several different, but closely related, research
areas. Ontology Integration, Merging, Versioning, and
Evolution deal with different aspects of this problem [1].
Changes do occur in ontology and are reflected in the
ontology by implementing these changes. As a result it
evolves to a new state [2, 3]. Consequently, an ontology
change management solution has to answer a number of
questions [4] like; systems’ overall working, “how to
maintain all the changes in a consistent and coherent
manner?” While other questions revolve around the
applications of all these logged changes for the purpose of
ontology recovery and visualization of change effects.

The goal of this research article is to provide preliminary
experimental results for our semantic structure and
framework [4, 5] for temporal traceability in ontology
evolution management. We developed Change History
Ontology (CHO) [4] for maintaining ontology changes
semantically. We envisioned a number of applications for the
logged changes such as, ontology change management,
change in semantics of the concepts, ontology recovery in
case the system crashes, query reformulation, reconciliation
of ontology mappings, change traceability, and to some
extent navigation and visualization of the changes and
change effects [5]. We have implemented and build a
framework as a plug-in for Protégé (an ontology editor) as
‘Change Tracer’. It automatically detects and logs all the
changes happened to ontology using CHO, triggered by the

change request from ontology engineer. After that, whenever
required, the CHL changes are accessed. The plug-in roll-
back and roll-forward any changes and get the ontology in
any previous consistent state. We have compared our system
results for change capturing with ChangesTab of Protégé and
our system has outperformed ChangesTab.

2. System Implementation and Results

We envisioned our proposed framework (see Figure 1) as
an enabling component for ontology editors. It doesn’t
provide ontology editing services. The framework is
designed to be used as a plug-in for different ontology editors
provided they support the hooks we have implemented.
Different individual components in the framework have their
own tasks, related to change history management. Change
Logger component, for instance is responsible to preserve the
changes using CHO (shown in Figure 2).

Figure 1. System architecture for Change Tracer

- 803 -

제32회 한국정보처리학회 추계학술대회 논문집 제16권 2호 (2009. 11)

Figure 2. Change History Ontology (CHO)

Different modules of the framework have their own
different task to perform; 1) Change Capturing is responsible
for capturing different changes occurring to ontology during
the life span of ontology. To capture these changes we have
implemented 7 different java interfaces available in Protégé,
Protégé-OWL, and Jena API’s. 2) Change Logger logs all the
captured changes in the CHL. 3) CHL is a repository that
keeps track of all the changes and it uses the structure
provided by CHO [4]. 4) Parser is a module that parses
ontology changes based on user request. This parsing can be
for any purpose like; logging, recovery, and visualization. 5)
Recovery module is responsible for recovering ontology
from one consistent state to another. This recovery is both i.e.
roll-back and roll-forward recovery. In CHO we introduced
the concept of ChangeSet for bunch of changes, so with the
help of ChangeSet we can recover ontology properly and to
any of its previous state. 6) Visualization module is
responsible for visualization of ontology, ontology changes,
and visual navigation of ontology changes. This help in
proper and better understanding of ontology evolution
behavior. We have extended the TouchGraph API for graph
drawing in order to visualize the graph view of the ontology
structure. Resources, such as concepts, are depicted as nodes.
These nodes are connected through slots which are depicted
as the edges in the visualization.

To validate the working of the proposed framework, we
have developed a TabWidget plug-in, Change Tracer Tab, for
Protégé ontology editor. The details of all the five main
modules and their implementations are available in [5]. Here
we provide the results analysis of our system against
ChangesTab of Protégé.

Figure 3, Comparison of Change Tracer against ChangesTab

of Protégé

We have configured our system and ChangesTab in
Protégé. Total of 35 different changes were made to
Documentation ontology. Out of these 35 changes,
ChangesTab captured 26 changes while our system captured
31 different changes. The x-axis in Figure 3 represent no of
changes applied and y-axis represent captured changes.

We have also envisioned different applications of the
stored ontology changes. The changes logged can be used for
applications such as; 1) Ontology Recovery: is the
application we discussed in this paper. 2) Query
Reformulation: when ontology evolves from one state to
another then the query posed on previous ontology versions
are not valid for the new evolved one. To reformulate the
query over evolve version we can use the stored changes. 3)
Reengineering Ontology Mappings: when there are mappings
available between two ontologies and one evolves from one
state to another then the mapping are no more reliable. So the
logged changes can be used for efficient reestablishment of
broken mappings between ontologies. 4) Temporal
Traceability: in this, we have all the ontology changes traced
and stored in a repository. We can use these changes for
predicting some temporal patterns about the change history.
Also these can help for visual navigation of ontology history.
These changes can also be used for future change prediction
in different circumstances. 5) Managing Ontology Changes:
this helps in properly managing ontology changes during
evolution. Using the changes stored in CHL can help user
understand the evolution/growth of ontology in different
phases and the user can get complete understanding of the
ontology in focus. Annotation can also be added to the
changes to explain the reason for change, author of change,
and timestamp of ontology change and this can help in
minimizing the evolution effects on the dependent data,
applications, and ontologies. This change management can
also help in understanding the semantics of changes.

Acknowledgement

This research was supported by the MKE (Ministry of
knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency)" (NIPA-
2009-(C1090-0902-0002)).
Also, it was supported by the IT R&D program of
MKE/KEIT, [10032105, Development of Realistic
Multiverse Game Engine Technology].

References
[1] G. Flouris, D. Plexousakis, and G. Antoniou, “A Classification of

Ontology Changes”, In Semantic Web Applications and
Perspectives, PISA, Italy, 2006.

[2] L. Stojanovic, A. Madche, B. Motik,, “User-driven ontology
evolution management,” In European Conference on
Knowledge Engineering and Management, pp. 285-300, 2002.

[3] S. Castano, A. Ferrara, G. Hess, “Discovery-Driven Ontology
Evolution”. The Semantic Web Applications and Perspectives,
PISA, Italy, 18-20 December, 2006.

[4] A. M. Khattak, K. Latif, S. Khan, N. Ahmed, "Managing Change
History in Web Ontologies," Semantics, Knowledge and Grid,
International Conference on, pp. 347-350, 2008.

[5] A. M. Khattak, K. Latif, S. Khan, and N. Ahmed, "Ontology
Recovery and Visualization," Next Generation Web Services
Practices, pp. 90-96, 2008.

- 804 -

