
제32회 한국정보처리학회 추계학술대회 논문집 제16권 2호 (2009. 11)

Comparison of two retargetable compilers: GCC
and SoarGen

Zheng Zhiwen, Minwook Ahn, Jonghee M. Youn, Yongjoo Kim, Yongin Kwon, Yunheung Paek

Seoul National University

jmjung@optimizer.snu.ac.kr, mwahn@optimizer.snu.ac.kr, jhyoon@optimizer.snu.ac.kr,

yjkim@optimizer.snu.ac.kr, yikwon@optimizer.snu.ac.kr, ypaek@snu.ac.kr,

Abstraction
This paper shows our empirical comparison result between two retargetable compilers, GCC and SoarGen.

SoarGen is our retargetable compiler. According to our experimental result, using SoarGen for targeting

ODALRISC is proved to be easier and faster than using GCC. The average retarget time of the SoarGen is much

less than the retarget time of the GCC.

1. Introduction
Porting GCC to new processor is an involved task,

and it is difficult to learn for GCC beginner since

there is no easy guide for the machine description

that can serve porting endeavors. [2] For reducing

the time to market, another retargetable compiler

called SoarGen [4] had been invented by our

research group in order to retarget a new processor

faster and easier. For testing whether SoarGen is

better than GCC, we did some investigations about

porting GCC and SoarGen to ODALRISC [1]

respectively.

2. Comparison between GCC and Soa
rGen

As GCC is free software, it have been extended and

developed many times by open communities. GCC is

considered as a developer retargetable compiler. [3]

Developer retargetable is a way to handle machine

specific optimizations that go beyond code

generation by permitting the compiler developer to

modify the compiler to target the given architecture.

SoarGen uses GCC as its frontend to utilize GCC

existing optimization routines, and performs

tree/DAG-based code generation. It also offers an

architecture description language (ADL) (we call it

SoarDL) for target architecture description

automaticlly. So, SoarGen is not just a compiler, but

a compiler-compiler that automatically generates a

compiler from SoarDL. And the most important thing

is SoarGen can be learned fast and easily since there

is a particular manual with it. However, nothing is

perfect, the cycle accurate information cannot be

transferred since low level information like pipeline

and data path is omitted in SoarGen.

3. Experimental result
For investigating the retargetabilities in the above

two compilers, we do some analysis on our porting

experiment. First, in order to measure the time

required for retargeting GCC and SoarGen by people

who know nothing about it, we did a test that porting

to ODALRISC processor by GCC and SoarGen

respectively. The test was done by five researchers in

- 17 -

제32회 한국정보처리학회 추계학술대회 논문집 제16권 2호 (2009. 11)

our research group. The results of the test are

displayed in Figure 1.

Figure 1. the time consumed for porting using

SoarGen and GCC

They all successfully ported SoarGen to ODALRISC,

but they didn’t complete GCC porting in this test.

They almost finished the modification of target

description macro file (machine.h) such as

implementing the storage layout or basic

characteristics of registers and register class

information. However, they got into troubles when

they were defining machine instructions. In average,

they complete about 60% of the whole work of GCC

porting since they did not complete the machine

instruction definition and the last debugging and

verification. Figure 1 shows how much time they

spent during each porting.

After we collected the porting result from the

researchers, we found the several differences

between GCC and SoarGen. In the case of SoarGen,

it enables users to describe the target machine at a

high level. Machine description file with the top-

down approach is intuitive and systematic.

Furthermore, it enables us using less grammar to

describe the architecture information formally. So it

is not much difficult to retarget SoarGen if we got

sufficient knowledge about it. Finally, the source

code of SoarGen is shorter than GCC’s, and it is

easier for debugging since the error message is so

comprehensive.

However, in the case of GCC, it is difficult to debug

poring because of the tremendous changes in the long

period of the development time, the huge size of

source code and the unkindness error message.

Furthermore, as open source software, the document

of GCC is not so detailed since so many engineers

developed it. Finally, the serious lack of the

knowledge about GCC increases the difficulty of

porting.

4. Conclusion
From our experiment, we conclude that SoarGen is

more intuitive and easier to port a new processor

although it does not support the cycle accurate

description of the target processor. We will include

several new features for representing a target

processor in more detailed level including this in

SoarGen soon.

5. References
[1]. Imyong Lee, Dongwook Lee and Kiyoung Choi,

ODALRISC: A Small, Low Power, and Configurable 32-bit

RISC Processor, ISOCC, 2008

[2]. http://gcc.gnu.org/onlinedocs/gccint/, 9.17.2009

[3]. Sejong Oh and Yunheung Paek, A Quantitative Comparison

of Two Retargetable Compilation Approaches, ICPP, 2003

[4]. Minwook Ahn, Yunheung Paek and Junghun Cho, Using a

H/W ADL-based compiler for fixed point audio codec

optimization thru application specific instructions, KIPS

Transactions. Part A. vola13, 4, 2006, pp.275-288

6. acknowledge
This work was supported by the Engineering Research Center of Excellence

Program of Korea Ministry of Education, Science and Technology(MEST)/

Korea Science and Engineering Foundation(KOSEF). （R11-2008-007-

01001-0）, ETRI SoC Industry Promotion Center, Human Resource

Development Project for ITSoC Architect, Seoul R&BD Program(10560),

Korea Science and Engineering Foundation(KOSEF) NRL Program grant

funded by the Korea government(MEST) (No.2009-0083190)

- 18 -

