Core ICP에 의한 Edge Uniformity Control에 따른 고 균일도 Plasma Source에 관한 연구

남 창 우 성균관대학교 태양광시스템 공학과

1. 서론

국내의 반도체산업에서 공정에 대한 특허기술은 대부분 chipmaker의 소자구조에 대한 특허가 대부분이다. 특히, 이 연구에서 진행하려고 하는 실리콘질화물 박막의 건식각 공정조건에 대한 특허는 전무하다. 대부분 소자내에서 부분적으로 이용되는 실리콘질화물을 식각하여 만든 구조에 대한 부분이어서, 본 연구의 기술로 개발된 Core-ICP Source를 적용한 건식각 공정의 특허 기술 개발로 기술 선위를 할 수 있을 것으로 판단된다.

2. 본론

균일한 고밀도 플라즈마를 발생하기 위한 유도 결합 플라즈마 반응기로서 CCP, ICP의 결합상태에서 이중주파수를 각각 장착 및 제어함으로써 기존 CCP에서 Edge균일성 확보가 어려웠으나 균일한 가스 공급과 마그네틱 코어 커버에 의한 자속 전달효율의 향상에 의해서 고밀도의 플라즈마를 균일하게 발생한다.

분리된 두개 이상의 안테나 및 전원분배, 이중 가스 공급 구조로: 두개의 가스 공급 경로를 통하여 서로 다른 두개의 공정 가스가 분리 공급, 플라즈마 처리의 균일도를 측정하였다.

3. 결과

Inductive Coupled Plasma와 결합한 Capacitance Coupled Plasma의 결합에 따를 Wafer Edge Uniformity Control이 쉽게되며,향후 300mm에서 450mm로 증가하는 웨이퍼가공에도 적용가능성이 높으며, 태양광 시스템 및 대면적 LCD 공정에도 유용하다.

참고문헌

- 1) M. J. Colgan, M. Meyyappan, and D. E. Murnick, Plasma Sources Sci. Technol., 3 (1994) 181.
- 2) J. Hopwood, Plasma Sources and Technol., (1992) 1.
- 3) M. A. Lieberman, J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Willy and Sons inc., (1994).
- 4) P. F. Williams, Plasma Processing of Semiconductor, Kluwer Academic Publishers, (1996).