마그네트론 스퍼터링법에 의해 증착된 ITO:Yb 및 ITO:Sm 박막의 연구
 Study on ITO:Yb and ITO:Sm films Deposited by Magnetron Sputtering

조상현, ${ }^{\mathrm{ab}}$, 이건환 ${ }^{\mathrm{b}}$, 송풍근 ${ }^{\mathrm{a}^{*}}$

a^{*} 부산대학교 재료공학부(E-mail:pksong@pusan.ac.kr), ${ }^{\text {b }}$ 한국기계연구원 부설 재료연구소

초 록: DC 마그네트론 스퍼터링법에 의하여 ITO, ITO:Yb 및 ITO:Sm 의 조성을 가지는 각각의 타겟을 사용하 여 상온에서 박막을 증착한 후 후 열처리를 실시하였다. Yb 및 Sm 이 첨가된 타겟을 사용하여 증착한 박막의 경우, 미세구조 및 전기적 특성, 표면거칠기 등은 ITO 박막내의 불순물의 함량에 크게 의존한다는 것을 알 수 있었다. 이것은 새로운 불순물의 첨가에 따른 ITO 박막의 결정성의 저하에 기인한다고 생각된다.

1.서론

최근 디스플레이의 비약적인 발전과 더불어 High-performance를 실현하기 위하여 투명 전도막의 특성에 대한 요구도 더욱 다양해지고 있으며 한층 고품질의 물성 치를 요구하고 있다. 예를 들면 최근 차세대 디스플레이로 서 주목 받고 있는 OLED에 사용되어지고 있는 ITO 박막의 경우, 투과율 및 전도도는 물론, 기존의 ITO박막의 박막표면에 잔존하는 돌기로 인하여 발생하는 dark spot라고 하는 디바이스의 성능에 치명적인 결함을 생성하 는 원인으로 작용하기 때문에 박막의 표면조도 역시 중요한 요인으로서 주목받고 있다. 또한 투명 전도막의 결 정립 사이즈는 엣칭 속도 및 패터닝 특성에 매우 큰 영향을 미치므로 결정립 사이즈의 균일도는 투명 전도막의 품질을 결정하는 중요한 인자 중 하나이다. 따라서 본 연구에서는 이온반경이 $\mathrm{In}_{2} \mathrm{O}_{3}$ 보더 큰 산화물 $\left(\mathrm{Yb}_{2} \mathrm{O}_{3}\right.$, $\mathrm{Sm}_{2} \mathrm{O}_{3}$)을 첨가하여 1차상의 성장을 억제하는 차세대 ITO 타겟을 제작하여 증착한 박막의 미세구조 및 전기적 특성에 대하여 연구하였다.

2.본론

Fig.1는 기판 가열없이 $\mathrm{Yb}_{2} \mathrm{O}_{3}$ 및 $\mathrm{Sm}_{2} \mathrm{O}_{3}(3 \mathrm{wt} \%$) 첨가량을 가진 타켓을 사용해 dc power 100 W , 증착압력 0.5 Pa 에서 증착한 박막의 다양한 어닐링온도 $\left(170,250^{\circ} \mathrm{C}\right)$ 에서 옄처리 한 XRD patterns의 변화를 나타낸 것이다. 상용화 타겟을 사용하여 증착한 ITO 박막을 어닐링 온도 $170^{\circ} \mathrm{C}$ 에서 후 열처리 한 경우, peck를 관찰 할 수 있 으나 $\mathrm{Yb}_{2} \mathrm{O}_{3}$ 및 $\mathrm{Sm}_{2} \mathrm{O}_{3} 3 \mathrm{wt} \%$ 가 첨가된 타겟을 사용하여 증착한 박막을 어닐링 온도 $170^{\circ} \mathrm{C}$ 에서 열처리 한 박막 의 경우 비정질 구조를 나타내는 것을 알 수 있었다. 따라서 ITO 타겟에 $\mathrm{Yb}_{2} \mathrm{O}_{3}$ 및 $\mathrm{Sm}_{2} \mathrm{O}_{3}$ 첨가는 결정화 온도 의 증가에 기인한다는 것을 알 수 있었다. 이러한 결정화 온도의 증가는 Yb^{3+} 이온 및 Sm^{3+} 의 이온반경이 In^{3+} 이온의 이온 반경 보다 크기 때문에 Yb 및 Sm 원자의 첨가는 ITO 상의 결정화를 방해한다고 사료된다.

Fig. 1. XRD patterns of a) ITO, b) ITO: Yb , and c) $\mathrm{ITO}: \mathrm{Sm}$ films annealed at different temperatures.

3.결론

상용화된 ITO 타겟과 비교하여, 불순물을 첨가한 ITO 타겟을 사용한 경우, 상대적으로 높은 어닐링 온도에서 결정성을 나타내었다. 이것은 Yb^{3+} 이온 및 Sm^{3+} 의 이온반경이 In^{3+} 이온의 이온 반경 보다 크기 때문에 Yb 및 Sm 원자의 첨가는 ITO 상의 결정화를 방해한다고 사료된다. 또한 불순물의 첨가는 박막의 표면거칠기 $\left(\mathrm{R}_{\mathrm{a}}\right)$ 를 감 소 시키지만, 결정성의 감소에 따른 케리어밀도를 감소시키므로 비저항의 증가에 기인하였다고 생각 된다. [1]

참고문헌

1. Y.Shigesato, S.Takaki, T.Haranoh, J.Appl. phys, 71(1992) 3356
