[ID-04] 100-GHz test observations of the KVN Antennas
Kee-Tae Kim, Do-Young Byun, Do-Heung Je, Taehyun Jung, Seog-Tae Han, Seog-Oh Wi, Chang Hoon Lee, Jae-Hoon Jung
Korean VLBI Network, KASI

Three KVN antennas have been constructed by American company Antedex in collaboration with its domestic counterpart High Gain Antenna. The antennas are expected to have pointing accuracies of 4" and aperture efficiencies of 60% at 100 GHz. We have carried out 100GHz test observations with KVN antennas in order to investigate whether their performances satisfy the requirements. In this talk we will present the results.

■ Session : 기기/자료처리 II (ID)
4월 29일(수) 16:25 ~ 17:25 제4발표장

[ID-05] Single-dish test observations of the KVN Yonsei telescope at 22/43 GHz
Sang-Sung Lee, Do-Young Byun, Do-Heung Je, Seog-Tae Han, Kee-Tae Kim, Bong Won Sohn, Hyunsoo Chung, Se-Hyung Cho, Se-Jin Oh, Duk-Gyoo Roh, Chang Hoon Lee, Bong Gyu Kim
Korean VLBI Network, KASI

We have carried out 22/43-GHz single-dish test observations of the KVN Yonsei telescope, which was firstly equipped with 22/43GHz receivers among the KVN telescopes. We measured its pointing accuracy and aperture efficiencies. We also investigated how well 22/43-GHz beams are aligned and performed phase stability tests. The pointing accuracy is less than 5 arcsec RMS and the estimated efficiencies are 64%~68%. The 22/43-GHz beams are aligned within 5 arcsec.

[ID-06] 초고속 대용량 자료 저장 시스템 구축

한일공동VLBI관관카(Korea-Japan Joint VLBI Correlator, KJVEC)는 초당 최대 1.4기가바이트의 속도로 랜 저장 장치 자료를 출력하는 초고속 계산기이다. 초당 최대 1.4기가바이트에 이르는 상관 처리 결과를 저장 처리할 수 있는 대용량 자료 저장 장치를 구 성하기 위하여, 100GB 플레이어 4회선을 통하여 상관자료를 일 력 받아, 동일한 대용량 공간에 적절한 크기의 파일들로 동시에 고 속으로 저장될 수 있도록 설계하였다. 2009년 1월 완성된 초고 속 대용량 자료저장 시스템(Peta-scale Epoch Data Archive (PEDA) system)은, 현재 KJVEC의 세계 최고속의 전자 자료 전송 능력(1.4Gigabytes/sec)과 119테라바이트의 실 저장용량을 갖추고 있다. PEDA 시스템은 전세계 공동VLBI관관카의 한 부분이며, KVN, 한일공동 VLBI 네트워크의 중요한 장비로 사용될 예정이다. 이 시스템의 구성과 특징 등을 소개하고자 한다.

[ID-07] Simulation of sources distribution for KVN Calibrator Survey (KVNCS)
Lee, Jeong Ae1,2, and Sohn, Bong-Won1
1Korea Astronomy and Space science Institute, 2University of Science and Technology

In order to observe weak radio sources with VLBI, their visibility phase should be corrected via the visibility phase of the nearby calibrators. For that, we need the phase reference sources. We have carried out the calibrator candidate selection to prepare the KVN Calibrator Survey (KVNCS). Prior to observation, we studied the source distribution at higher than 30’ of declination. Our study was based on the VCS (VLBA Calibrator Survey) catalogue. Using 3799 sources from VCS, we estimated the expected flux of K and Q bands and selected sources which have flux stronger than 100mJy. First, we confirmed the spatial distribution of the calibrator candidates so that we found out how many sources we have to detect in the future. When we performed the phase-referencing observation, in general, a separation angle between target source and calibrator should be 2’ to 5’. Using Delaunay Triangulation technique to calculate the effective area of each source, we compared with the area of spherical triangles. Through this calculation, we are able to confirm the region where we have to find more calibrators. We will carry out a test run on the sample of the candidates to verify and to monitor their flux in the first half of 2009.

[ID-08] First fringe detection, sensitivity estimation and operation mode of KVN
Bong Won Sohn1, Atsushi Miyazaki2, Do-Young Byun1, Hideyuki Kobayashi2, Do Heung Je1, Yukitoshi Kanya3,4, Tomoharu Kurayama1, Sang Sung Lee1, Tae Hyun Jung4,5 and KVN & VERA team
1Korea Astronomy and Space Science Institute, 2Department National Astronomical Observatory of Japan, 3Yonsei University, 4University of Science and Technology

We report the result of the KVN-VERA fringe detection. The experiments were carried out on 1st and 3rd November 2008. Further tests are done on 12th and 13th of March 2009. KVN Yonsei telescope and all available VERA telescopes participated in the observations. Strong water