Flow Forecasting using Neural Networks Model in Nakdong River Basin

신경망 모형을 이용한 낙동강 유역에서의 유량 예측

  • Published : 2009.05.21

Abstract

본 연구의 목적은 강우-유출자료 및 댐 방류량 자료의 비선형적인 특정을 가장 잘 반영할 수 있는 신경망모형을 적용하여 수질정책의 기초자료를 제공하기 위하여 신뢰성 있는 유량자료를 산정하는 모형을 개발하였고 이를 낙동강 유역에 적용하는 것이다. 이를 위해서 낙동강물환경연구소의 8일 측정 유량이 가지는 정확성을 이용하면서 상류 댐의 일 방류량자료와 유역별 강우자료 및 국토해양부 수위관측소의 수위자료를 연계하여 유량을 보간할 수 있는 유량 보간 신경망 모형을 개발하였다. 신경망 모형의 출력값은 낙동강물환경 연구소에서 측정하지 않은 기간에 대하여 유량을 보간할 수 있도록 구성하였으며 신경망 모형의 구조는 입력층과 출력층 사이에 하나의 은닉층이 존재하는 다층 신경망으로 구성하였으며, 학습단계에서는 오류 역전파 알고리듬 학습방법 중 모멘텀법을 사용하였다. 본 연구를 통하여 낙동강 전 유역에 대하여 유량 보간 모형을 적용한 결과 댐 방류량과 강우자료 및 상류 수위 관측소의 유량 자료를 이용한 유량 보간 신경망모형의 일 유량결과의 적용가능성을 검증할 수 있으며, 제시된 모형은 지속적인 수문자료의 질적 향상과 유출패턴의 축적으로 그 성능을 향상시킬 수 있을 것이며 또한 홍수기의 더 정확한 유량예측을 위한 적용사례의 확장 및 SWAT을 이용한 모형의 적용에 대한 연구가 병행되어야 할 것이다.

Keywords