손상제어시험을 이용한 결정질 암석의 취성파괴 특성연구

박현익((주)동일기술공사) 서영호(현대건설(주)) 천대성(한국지질자원연구원) 노봉건, 유광호, 박연준(수원대학교)

1. 서론

최근 국내에서는 고속철도 및 백두대간을 관통하는 고속도로 터널, 방사성 폐기물 지하처 분장, 지하유류 비축기지 같은 대심도 지하공동 시설물들이 다수 계획되고 있다. 고준위 방 사성 폐기물을 생태계로부터 장기간 안전하게 격리시키기 위해서는 지하 300~1,000 m 깊 이의 지하 심부에 건설되어야 하는 점을 감안하면 취성파괴 발생 가능성이 아주 높은 시설 물이라 할 수 있어 취성파괴에 대한 연구의 필요성이 더욱 높아지고 있다(권상기 외, 2006). 특히 취성파괴의 발생은 암반 공동 구조물의 안정성 저해는 물론 시설물의 기능에도 영향을 끼칠 수 있기 때문에 구조물의 설계 단계에서부터 응력조건에 따른 취성파괴의 발생여부 및 파괴범위 등을 파악하는 것이 대단히 중요하다.

이러한 상황과 지금까지의 연구결과를 바탕으로 하여, 취성파괴에 취약한 국내의 대표적 결정질 암석을 표본으로 하여 취성거동을 포함한 역학적 거동을 파악하고자 하였으며, 그 결과를 토대로 취성파괴거동을 모사하는 대표적 해석모델인 CWFS (Cohesion Weakening Frictional Strengthening) 모델식을 구성하여 전통적 파괴기준 모델식에 의한 결과와 비교 검토하여 그 적합성을 확인하고자 하였다. 또한 표본 암석에 대한 현지 암반상태를 가정하 여 취성파괴양상 및 발생가능심도 등의 연구·검토를 수행함으로써 향후 취성파괴가 예상되 는 대심도 암반 공동구조물 계획 시 참고자료로 활용될 수 있도록 하고자 하였다.

2. CWFS 모델

Martin and Chandler(1994)는 무결암에 대한 거시적 파괴면의 발달과정은 인장균열이 점 진적으로 증가하여 최종적으로 전단파괴에 이르게 되고, 이로서 점착력 손실과 마찰력 발현 을 혼합한 모델로 모사되어짐을 보여주었다. 이 모델의 점착력 손실과 마찰력 발현은 그림 2.1에 잘 나타나 있으며, 이를 CWFS 모델로 정의하였다(Hajiabdolmajid et al., 2000). Hajiabdolmajid 는 Martin and Chandler(1994)들이 제안한 실내 손상제어시험결과로 구해지는 점착강도 및 마찰 강도를 Vermeer and Borst(1984)가 제안한 다음의 식 (2.1)에 의해 결정된 전단 소성변형률 ϵ^{ps} 과 연관시키기 위해 식 (2.2)를 제안하였다.

$$\epsilon^{ps} = \left\{ \frac{1}{2} (\epsilon_1^{ps} - \epsilon_m^{ps})^2 + \frac{1}{2} (\epsilon_m^{ps})^2 + \frac{1}{2} (\epsilon_3^{ps} - \epsilon_m^{ps})^2 \right\}^{\frac{1}{2}}$$
(2.1)

여기에서 $\epsilon_m^{ps} = \frac{1}{3} (\epsilon_1^{ps} + \epsilon_c^{ps})$ 이고, 인장 소성 변형률 (ϵ^{pt}) 은 식 (2.2)와 같이 정의된다.

 $\epsilon^{pt} = \epsilon_3^{pt}$

(2.2)

그림 2.1 소성변형률에 따른 점착력 손실과 마찰력 증대(Hajiabdolmajid et al., 2000)

이 소성 변형률은 마찰력과 점착력 성분의 소성 변형률 한계(ϵ_{ϕ}^{p} , ϵ_{c}^{p})를 정하기 위해 사 용된다. 예를 들어 마찰력은 소성변형률이 발생하기 전에는 0 이지만 전단 소성변형률이 증 가할수록 일정한 기울기로 증가하게 되고 ϵ_{ϕ}^{p} 에 도달하게 되면 최대마찰력으로 발현된다. 또한 점착력은 전단 소성변형률이 발생하기 전에는 최대값을 보이지만, 소성변형률이 증가 할수록 일정 기울기로 감소하게 되고 ϵ_{c}^{p} 에 도달하게 되면 잔류강도값에 도달한다.

3. 암석의 파괴특성에 대한 수치해석적 검토

3.1 해석조건 및 방법

NX 코아 시료를 모사하기 위해 폭 50 mm, 높이 125 mm의 시료를 총 1,000 (20×50)개 의 요소로 분할하여 형상화하였다. 일축 압축의 경우에는 축방향으로 일정한 변위속도(10⁻⁸ m/sec)를 가하였으며, 삼축 압축의 경우에는 시료의 측면에 구속압을 가한 후 일축 압축의 경우와 마찬가지로 축방향으로 동일한 변위속도를 주어 하중을 가하였다.

해석에 적용된 암석 시료의 역학적 특성은 표 3.1 및 3.2와 같다. CWFS 모델의 경우에는 손상제어시험 결과를 바탕으로, M-C 모델의 경우에는 일축 및 삼축 압축시험 결과를 반영 하여 입력 물성을 결정하였다. 암석 내부에 결함이 있는 경우를 가정하여 인장강도는 시험 결과의 1/2을 적용하였으며, CWFS 모델에서 인장강도의 한계변형률은 자료가 없어 점착력 한계변형률의 1/2로 가정하였다.

표 3.1 일축 및 삼축 압축시험의 해석에 적용된 암석시료의 역학적 특성(CWFS 모델)

암종	탄성 계수 (GPa)	포아 송비	체적 계수 (GPa)	전단 계수 (GPa)	점착력 (MPa)		최대 미차가	최대 인장	한계변형률(%)		
					초기	잔류	تور»)	강도 (MPa)	점착력	마찰각	인장 강도
편마암	53.8	0.19	28.92	22.61	89	12	50	6	0.45	0.75	0.225
화강암	53.9	0.19	28.98	22.65	90	7.5	60	6.5	0.35	0.67	0.175

표 3.2 일축 및 삼축 압축시험의 해석에 적용된 암석시료의 역학적 특성(M-C 모델)

암종	탄성계수 (GPa)	포아송비	체적계수 (GPa)	전단계수 (GPa)	점착력 (MPa)	마찰각 (°)	인장강도 (MPa)
편마암	53.8	0.19	28.92	22.61	23	61	6
화강암	53.9	0.19	28.98	22.65	25	59	6.5

3.2 일축 및 삼축압축시험결과

그림 3.1과 3.2를 비교하였을 때 두 모델 모두 초기 강도는 이론해와 동일하게 예측하였으나, M-C 모델의 경우 잔류강도는 이론해보다 작게 예측하였다. 경우에 따라 다르지만 CWFS 모델의 경우에는 국부적인 소성변형률에 따른 이론치보다 다소 크거나 작게 예측하였다. 이는 이론치의 산정 시 최대마찰각과 잔류점착력만을 사용하였기 때문이다.

일축압축의 경우 CWFS 모델은 초기 강도를 넘어서면 시료 바깥쪽으로부터 수직 인장크랙 이 생성되면서 수직적으로 쪼개지는 vertical splitting 형태의 파괴 모드를 나타내었다. 이는 시 료의 상부와 하부면에 마찰이 없을 때 실제 실험에서 나타나는 파괴형태이며, 따라서 CWFS 모델은 암석의 취성파괴거동을 잘 모사한다고 할 수 있다.

그림 3.1 일축 및 삼축압축시험 결과로 발생된 소성영역 분포도(CWFS 모델)

×		X	X	X	X	X		X	X	X	X	X	X	
일축압축	구속압 5 MPa	구속압 10 MPa	구속압 15 MPa	구속압 30 MPa	구속압 60 MPa	구속압 120 MPa	일축압축	구속압 5 MPa	구속압 10 MPa	구속압 15 MPa	구속압 30 MPa	구속압 60 MPa	구속압 120 MPa	
178 MPa 3,200με	253 MPa 4,514 $\mu\epsilon$	327 MPa 5,816με	398 MPa 6,690 $\mu\epsilon$	623 MPa 11,284 $\mu\epsilon$	1,017MPa 19,024 $\mu\epsilon$	1,960MPa 34,700 $\mu\epsilon$	184MPa 3,240 $\mu\epsilon$	242 MPa 4,320 $\mu\epsilon$	310 MPa 5,532µ€	372 MPa 6,690 $\mu\epsilon$	567 MPa 10,136με	955 MPa 16,976 $\mu\epsilon$	1,730MPa 30,672 $\mu\epsilon$	
(a) 편마암의 최대강도								(b) 화강암의 최대강도						
Ż	X	X	X		X			X		X	X	X	X	
일축압축	구속압 5 MPa	구속압 10MPa	구속압 15 MPa	구속압 30 MPa	구속압 60 MPa	구속압 120 MPa	일축압축	구속압 5 MPa	구속압 10MPa	구속압 15 MPa	구속압 30 MPa	구속압 60 MPa	구속압 120 MPa	
145 MPa 3,280με	180 MPa 4,560με	238 MPa 8,276με	260 MPa 7,891με	348 MPa 11,376με	618 MPa 21,680με	1,070MPa 34,832με	169 MPa 8,010με	191 MPa 5,520με	220 MPa 7,342με	251 MPa 6,770με	560 MPa 10,216με	602 MPa 17,056με	1,053MPa 30,740 <i>μ</i> ε	
(c) 편마암의 잔류강도							(d) 화강암의 잔류강도							

그림 3.2 일축 및 삼축압축시험 결과로 발생된 소성영역 분포도(M-C 모델)

삼축압축시험의 경우, CWFS 모델은 구속압의 증가에 따른 강도의 증가와 취성-연성 변 이 과정을 잘 모사하였으나, M-C 모델은 단순히 강도의 증가만을 보여 구속압 증가에 따른 취성도의 감소를 구현하지 못하였다.

Kaiser et al.(2000)는 일반적으로 널리 쓰이는 파괴이론, 특히 Mohr-Coulomb의 파괴이론은 암반의 파괴를 올바로 예측하지 못한다고 하였다. 그 이유는 암석에 변형이 발생하면 입자 간의 결합이 깨지면서 점착력을 상실하고 손상이 축적되기 때문이다(Diederichs, 2003). M-C 이론의 경우 인장파괴 시에는 인장강도가 상실되나 점착력은 유지하는 것으로 가정한 다. 그림 3.3에 도시한 바와 같이 낮은 구속압에서는 spalling에 의한 파괴, 높은 구속압에서 는 전단파괴를 예측하는 S-형태의 파괴포락선이 필요하다고 하였다.

그림 3.3 손상시점, spalling 한계 및 암반강도 포락선을 나타내는 S-형상 파괴 기준 (Kaiser et al., 2000; Diederichs, 2003)

이러한 S 모양의 파괴포락선은 그림 3.4에 도시한 Tri-linear 포락선으로 단순화 될 수 있다(Diederichs et al., 2007). 여기서 UCS_I는 실험실에서 구한 일축압축강도이며, UCS_I는 전단파괴를 나타내는 직선의 연장이 σ₁축과 만나는 절편으로 일종의 '겉보기 일축압축강도' 라 할 수 있다.

그림 3.5는 위에서 설명한 3개의 선으로 본 연구 대상 암석의 파괴포락선을 표현한 것이 다. Kaiser & Kim(2008)은 첫 번째와 두 번째 직선 영역을 'spalling dominant' 영역이라 하였으며, Diederichs et al.(2007)은 첫 번째 직선 영역을 '손상한계영역' 또는 '손상영역', 두 번째 직선 영역을 'spalling 영역'으로 구분하였다.

 (a)편마암
 (b)화강암

 그림 3.5 암종에 대한 Tri-linear 파괴포락선

본 연구 대상 암석 중 화강암의 'spalling dominant' 영역의 상한은 최소주응력이 일축압 축강도의 약 20% 정도로 그림 3.4의 Diederichs et al.(2007)의 결과와 유사하지만, 편마암의 경우 이 한계가 일축압축강도의 60%에 육박하여 다소 크게 나타났다. 이는 편마암의 최대 마찰각이 50°로서 실험실에서 수행한 삼축압축시험 결과인 61°와는 차이가 크기 때문인 것 으로 판단된다.

5. 결론

심부 터널 주변 암반의 취성파괴 거동특성을 파악하기 위해 손상제어실험을 수행하여 CWFS 모델의 중요한 파라미터인 소성한계변형률에 따른 점착력과 마찰각의 변화를 파악 하였다. 본 연구에 의해 도출된 결과를 정리하면 다음과 같다.

- CWFS 모델은 구속압의 증가에 따라 연성적인 거동으로의 전이 현상이 뚜렷이 관찰되었으나, M-C 모델은 그러한 전이를 구현하지 못하였다.
- 2) 두 모델 모두 초기 강도는 이론해와 동일하게 예측하였으나, M-C 모델의 경우 잔류강 도는 이론해보다 작게 예측하였다. CWFS 모델의 경우에는 경우에 따라 다르지만 국 부적인 소성변형률에 따라 이론치보다 다소 크거나 작게 예측하였다.
- 3) 일축압축의 경우 CWFS 모델은 초기 강도를 넘어서면 시료 바깥쪽으로부터 수직 인 장크랙이 생성되면서 수직적으로 쪼개지는 vertical splitting 형태의 파괴 모드를 나타내 었다.
- 4) 삼축압축시험의 경우, CWFS 모델은 구속압의 증가에 따른 강도의 증가와 취성-연성 변이 과정을 잘 모사하였으나, M-C 모델은 단순히 강도의 증가만을 보여 구속압 증가 에 따른 취성도의 감소를 구현하지 못하였다.
- 5) 실험실 시험결과를 Hoek-Brown의 파괴식으로 회귀분석하고, CWFS 모델로 예측된 초기 강도 및 잔류강도와 함께 $\sigma_1 - \sigma_3$ 평면상에 도시한 결과, Kaiser와 Diederichs 등이 발표 한 바와 같은 Tri-linear 포락선을 얻을 수 있었다.

본 연구를 통해 알아본 바와 같이 취성파괴는 일단 발생하게 되면 일반적인 지보재로는 대처하기 불가능하며, 공동 형상의 변경이나 심도 변경 등의 특별한 조치방법 외에는 달리 대책이 없을 것으로 판단된다.

참고문헌

- 1. 권상기, 조원진, 2006, 고준위폐기물 처분연구를 위한 지하처분연구시설에서의 암석역학 관련 연구, 한국암반공학회지 터널과 지하공간 제 17권 1호, pp. 43~55.
- Diederichs, M.S., Carvalho, J.L., Carter, T.G. 2007, A modified approach for prediction of strength and post yield behaviour for high GSI rock masses in strong, brittle ground., 1st Canada–U.S. Rock Mech. Symp., pp. 249–257.
- Diederichs, M.S., 2003, Rock fracture and collapse under low confinement conditions, Rocha Medal Recipient, Rock Mech. Rock Engr., 36(5):339–381.
- Hajiabdolmajid, V., Martin, C.D. and Kaiser, P.K., 2000, Modelling brittle failure of rock, Proceedings of Pacific Rocks 2000, pp. 991~998.
- Kaiser, P.K., Diederichs, M.S., Martine, C.D., Sharp, J., Steiner, W., 2000, Underground works in hard rock tunnelling and mining, Proceedings of GeoEng2000, Melbourne, November, Vol. 1, pp. 841~926.
- Kaiser, P.K., Kim, B.H., 2008, Rock mechanics advances for underground construction in civil engineering and mining, Proceedings of KSRM Annual Conference, pp. 3~16.
- Martin, C.D., Chandler, N.A., 1994, The progressive fracture of Lac du Bonnet granite, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 31, pp. 643~659.