II - 36

Phenolic Compounds of Warm Season 22 Garlic (Allium sativum L.) Lines

¹Department of Applied Bioscience, College of Life and Environment Science, Konkuk University, Kwang JinKu, Seoul, 143-701, Korea

²National Agrobiodiversity Center, Suwon, 441-707, Korea

<u>Hyun-seok Jeon</u>¹, Su-hyun Seo¹, Eun-young Kang¹, Eun-hye Kim¹, Jae-woo Kim¹, Tae-sic Gwak¹, Yoon-mi Jun¹, Min-A Yeo¹, Jin-hee Park¹, Haeng-hoon Kim², Joung-kuk Ahn¹, Ill-min Chung^{1*}

난지형 마늘(Allium sativum L.) 22종의 페놀성 화합물

¹건국대학교 생명환경과학대학 생리생태 실험실 : 전현석, 서수현, 강은영, 김은혜, 김재우, 곽태식, 전윤미, 여민아, 박진희, 김석주, 안종국, <u>정일민</u>* ²국립농업유전자원센터 : 김행훈

Objectives

This study was designed to investigate the possible utilization of Garlic(Allium sativum L.) as a source of functional ingredients. It has been reported to contain various phenolic compounds which have antibiotic and anticarcinogenic properties and thus may reduce the possibility of cancer and chronic diseases.

Method and Materials

Plant materials

- 22 kinds of warm season garlic lines cultivated and collected in Dan-yang, Chuncheoungbuk-do region.

Methods

- Each garlic part was repeatedly freeze dried then ground. Two grams of each powder were mixed with 10 mL of acetonitrile (ACN) and 2 mL of 0.1 N HCl for 2 h at room temperature to extract solutes before filtering through No. 42 Whatman filter paper and evaporated. Each sample was redissolved in 10mL of 80% methanol (MeOH) solution, and the HPLC sample was used after filtering with a 0.45 μ m syringe filter (TITAN, nylon)

HPLC	Agilent 1100 series (Germany)
Detector	G1315B DAD detector
Column	YMC-Pack ODS-AM-303 (5μm, 4.6mm×250mm I.D.)
Mobile phase	A - 0.1% glacial acetic acid in millipore water
	B - 0.1% glacial acetic acid in ACN
Flow rate	1mL/min
UV	280nm

주저자 연락처 : 정일민 E-mail : imcim@konkuk.ac.kr Tel : 02-450-3730

Result

The total content of phenolic compounds was $9762.67\mu g$ g⁻¹in garlic 22lines. The contents of myricetin among 22 lines showed the highest concentrations with $4370.16\mu g$ g⁻¹. Caffeicacid, chlorogenicacid and pyrogallol exhibited $665.845\mu g g^{-1}$, $664.22\mu g$ g⁻¹ and $638.205\mu g$ g⁻¹, respectively. On the other hand, hesperetin, syringic acid and t-cinnamic acid content were low $1.44\mu g$ g⁻¹, $3.585\mu g$ g⁻¹ and $4.315\mu g$ g⁻¹. This results will contribute warm season garlic breeding with the high content phenolic compounds.

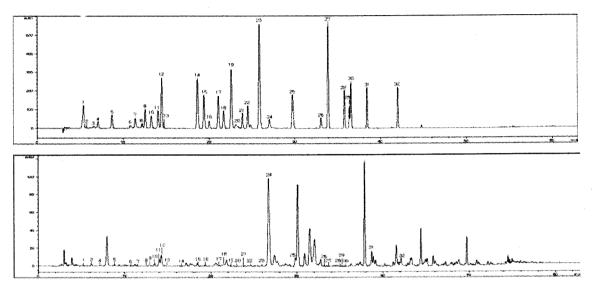


Figure 1. The cromatogram of 32 phenolic compound and M2008

A: standard phenolic compounds, B; M2008

- 1; Gallic acid, 2; 5-Sulfosalicylica acid 3; Pyrogallol, 4; Homogentisic acid, 5; Protocatechuic acid,
- 6; Gentisic acid, 7; Chlorogenic acid, 8; (+)Catechin, 9; p-Hydroxybenzoic acid, 10; b-Resorcylic acid,
- 11; Vanillic acid, 12; Caffeic acid, 13; Syringic acid, 14; Vanillin, 15; p-Cournaric acid, 16; Rutin,
- 17; Ferulic acid, 18; Veratric acid, 19; m-Coumaric acid, 20; Salicylic acid, 21; Naringin,
- 22; Hesperedin, 23; o-Cournaric acid, 24; Myricetin, 25; Resveratrol, 26; Quercetin, 27; t-Cinnamic acid,
- 28; Naringenin, 29; Kaempferol, 30; Hesperetin, 31; Formononetin, 32; BiochaninA

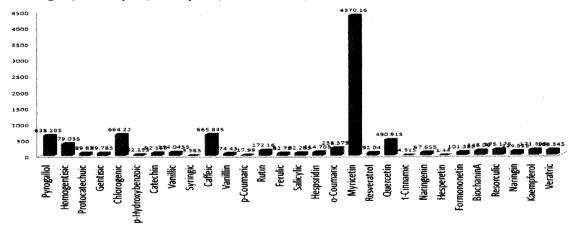


Figure 2. Total contents of phenolic compounds in warm season garlic.