고속도로 발생소음 음원모델 연구(1)

A Study on Emission Source Model for Highway Noise Calculation(1)

김철환†·조윤희·장태순·전기성*

Chulhwan Kim, Yoonhee Cho, Taesun Chang, Kisung Cheon

1. 서 론

도로소음 대책을 위한 정확한 소음예측을 위해서는 음원모델, 전파모델 모두 타당하지 않으면 그 정확성을 기대하기 어렵다. 전파모델에 대해서는 차폐물에 의한 회절, 지면반사, 공기흡수, 수목의 영향 등 소음의 초과감쇠(excess attenuation)에 대한 연구가 진행되어 왔지만 음원모델에대해서는 일반적으로 차량 통과소음(pass-by noise)에 대한 ISO 362 및 ISO 11819-1을 기본으로 한 음압레벨(sound pressure level, SPL)측정을 통해 주행차량의 음향파워레벨(sound power level, PWL)을 산출하고 있다. 하지만 측정 대상이 되는 차종 및 차량의 연식 그리고 포장면의 종류와 마모 정도에 따라 측정값이 차이가 크게 나게되고, 공용상태에서는 음향파워 산출의 오차 요인이 많아지게된다. 본 연구에서는 공용조건에서의 측정한 음압레벨을 바탕으로 기존 방법으로 산출한 고속도로 발생소음에 대한음향파워레벨을 수정, 보완하고자 한다.

2. 기존방법에 대한 고찰

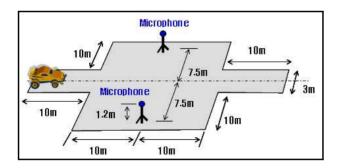


Fig.1 Measuring condition of a vehicle emission noise (ISO 362)

† 교신저자; 한국도로공사 도로교통연구원

E-mail: c.h.kim@ex.co.kr Tel:(031)371-3366, Fax:(031)371-3287

* 한국도로공사 도로교통연구워

Fig.1 에 ISO 362에서 제안하고 있는 차량 발생소음의 측 정 방법에 대한 개요를 나타내었다. 그림의 규격은 시험을 위한 최소 규격을 나타내며, 시험장의 중심으로부터 반경 50m 이내에는 음향 반사의 우려가 있는 물체가 없어야 한 다. ISO 11819-1에서 규정하고 있는 시험방법은 타이어와 노면의 마찰음 측정을 주요 목적으로 하고 있으나 측정조 건은 ISO 362와 크게 다르지 않다. 주행 중심선으로부터 7.5m 떨어진 지상 1.2m 위치에 마이크로폰을 설치하고 측 정대상 차량이 통과할 때의 피크(peak)값을 "빠름(fast)"의 시간특성으로 측정하며 반사성 지면조건의 반자유 음장 조 건에서 점음원 거리감쇠 특성을 가정하여 파워레벨을 산출 한다. 이 방법이 간편하기는 하지만 정지된 점음원으로 가 정하기에는 자동차의 부피가 크고 산출과정에 지향성을 갖 는 이동음원에 대한 고려가 없으므로 산출된 음향파워에는 오차가 있다고 볼 수 있다. 이러한 오차요인을 제거하기 위 하여 일본음향학회(ASJ)에서 제안하고 있는 음원모델에는 식(1)과 Table 1에 나타낸 것과 같이 회귀분석을 통해 주 행속도의 대수값을 취한 log10V 항을 변수항으로 도입하고 있다.

$$L_{WA} = a + b \log_{10} V + C$$
 식(1)

여기서, Lwa는 A특성 음향파워레벨, V는 주행속도, a는 차 종변수, b는 정상주행일 때 30, 비정상 주행일 때 10, C는 포장상태, 종단구배, 지향성 등에 대한 보정값을 나타낸다.

Table 1 Value of constant "a" for vehicle classification in ASJ RTN-model 2003

차종분류	정상주행 (40km/h≤V≤140km/h)	비정상주행 (10km/h≤V≤60km/h)			
승용차	46.4	82.0			
소형화물차	47.6	83.2			
중형차	51.5	87.1			
대형차	54.4	90.0			

3. 새로운 방법에 대한 검토

일본음향학회(ASJ)의 해설서(3)에서도 언급하고 있듯이 주행하는 차량에서 발생하는 음향파워를 산출하기란 용이한 일이 아니다. 차량 단독일 경우에도 이러한데, 공용상태의 고속도로에서 발생하는 소음의 음향파워를 산출하기란 더더욱 어려운 일이다. 본 연구에서는 공용중인 고속도로의도로단에 모니터링 마이크로폰을 설치하고 실제 교통흐름상황에서 발생하는 음압레벨을 측정하여 음향파워를 산출하는 방법을 검토하였다. Fig.2 에 검토한 고속도로의 사진과 단면의 모식을 나타내었다.

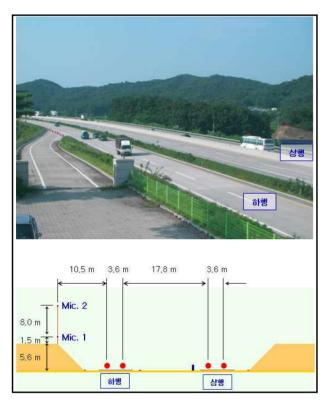


Fig.2 Photo and schematic feature of measuring site

Table 2 Measured SPL at considering points

	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	OA
Mic.1	45.5	51.5	60.0	70.1	80.5	74.9	64.7	53.0	82.0
Mic.2	41.2	52.2	61.7	71.3	80.1	75.5	64.1	53.1	81.9

Fig.2 의 상행과 하행 차선의 중심에 각각 가상의 선음 원이 존재한다고 가정하고 아래의 식(2)에 의해 반사성 지 면에 대한 거리감쇠를 보정하여 산출한 음향파워레벨을 Table 3에, 그리고 산출한 음향파워를 이용하여 예측한 음 압레벨과 측정값을 비교하여 Fig.3에 나타내었다.

$$L_{WAi} = L_{PAi} + 10 \times \log_{10}(\pi d)$$
 $4(2)$

여기서, L_{WAi} 와 L_{PAi}는 각각 옥타브밴드 중심주파수의 A특성 음향파워레벨과 음압레벨을, 그리고 d는 가상의 중심차선으로부터 측정지점까지의 거리를 의미한다.

Table 3 Estimated PWL from a considering highway

Freq.	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	OA
PWL1-1	65.8	71.9	80.3	90.5	100.9	95.2	85.0	73.3	102.3
PWL1-2	62.0	68.0	76.5	86.6	97.0	91.4	81.2	69.5	98.5
PWL1	67.3	73.4	81.8	92.0	102.4	96.7	86.5	74.8	103.8
PWL2-1	61.8	72.8	82.2	91.9	100.7	96.1	84.7	73.7	102.5
PLW2-2	58.8	69.9	79.3	88.9	97.7	93.1	81.7	70.7	99.5
PWL2	63.5	74.6	84.0	93.7	102.4	97.9	86.5	75.4	104.3
PWL	65.8	74.0	83.1	92.9	102.4	97.3	86.5	75.1	104.1

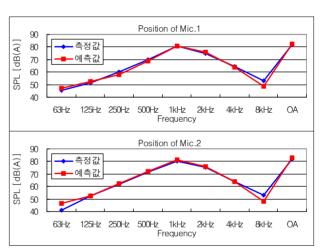


Fig.3 Calculated SPL by using PWL shown Table 3

4. 결 론

고속도로의 도로단에서 측정한 음압레벨로부터 발생소음에 대한 음향파워를 산출하는 방법을 검토하였고, 향후 추가적인 연구를 통하여 교통흐름을 고려한 보다 정확하고 실용적인 음향파워의 추정방안을 검토할 예정이다.

5. 참고문헌

- (1) KS A ISO 362 음향-가속 차량의 방사소음 측정-실용 측 정 방법, 2004
- (2) 道路騒音の予測, 日本音響学会誌 Vol.50, No. 3, 1994
- (3) 道路交通騒音の予測モデル"ASJ RTN-Model 2003", 日本音響学会誌 Vol.60, No.4, 2004

[dB(A)]