# 머리전달함수 측정시스템의 개발과 분석

## Newly Designed HRTF Measuring System and its Analysis

이윤재 + · 박영진\* · 박윤식\*\*

Yunjae Lee, Youngjin Park and Youn-sik Park

### 1. 서론

사람들에게 두 개의 스피커 혹은 헤드폰을 기반으 로 하여 방향감을 느끼도록 하기 위해서는 머리주변 임의의 위치에 있는 음원에서 방사된 음파와 양 귀 고막에 도달하는 음파간의 전달함수를 사용하게 되 는데, 이를 머리전달함수(Head-related Transfer Function: HRTF)라고 한다. 따라서 가상입체음향을 구현하기 위해서 가장 핵심적인 요소는 머리전달함 수 데이터베이스이며, 많은 연구실 혹은 연구센터에 서는 머리전달함수 데이터베이스를 구축하고 있다. 기존의 머리전달함수 데이터베이스 중 몇 개의 머리 전달함수 데이터베이스는 공개되어 있으나, 신체정 보형상 정보와 함께 공개된 기존의 머리전달함수 데 이터베이스는 모두 서양인을 대상으로 측정된 것이 다. 따라서 동양인을 대상으로 한 공개된 머리전달 함수 데이터베이스가 필요하며 이에 한국인을 대상 으로 한 머리전달함수 데이터베이스를 구축하기 위 한 선행과정으로 머리전달함수 측정장치를 제안하고 자 한다.

#### 2. 머리전달함수 측정시스템

제안된 머리전달함수 측정시스템은 크게 두 가지 측면에서 주안점을 두고 설계하였다. 첫 째, 피실험자의 움직임을 제한하면서도 편안하게 실험에 참여할 수 있는 장치를 고안하기 위하여, 그림 2-1 과같이 의자와 벨트를 사용하였으며, 임의의 수평각에위치한 음원을 표현하기 위하여 의자를 회전시키는 것이 아니라 전체적인 프레임을 회전시키도록 하였다. 두 번째로 피실험자가 직접 참여할 수 있는 장치를 고안하기 위하여 카메라, 모니터, 스피커 분배기를 사용하였고, 이를 이용한 전체적인 실험과정은다음과 같다. 피실험자가 모니터를 통해 자신의 머

리 위치를 확인한 뒤, 머리의 위치가 허용범위 안에 위치하게 되면 피실험자는 자신의 손에 있는 버튼을 누르게 된다. 피실험자가 버튼을 누르게 되면 스피커 분배기가 작동하게 되고, 스피커 분배기는 맨 밑에 위치한 스피커부터 차례대로 1 초간의 입력신호를 보내게 된다. 전파된 입력신호는 외이도 입구에 위치한 마이크로폰으로 측정하게 되며 랩뷰를 통해 자동으로 컴퓨터에 데이터가 저장되게 된다. 전체적인 실험과정은 그림 2-2 와 같다.



그림 2-1 머리전달함수 측정장치

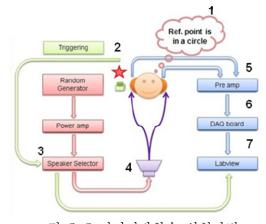



그림 2-2 머리전달함수 실험과정

E-mail: yjlee67@kaist.ac.kr

Tel: (042) 350-3075

\* KAIST

\*\* KAIST

<sup>†</sup> 교신저자; KAIST

#### 3. Guided circle 의 지름결정

| Features             | Specification             |  |
|----------------------|---------------------------|--|
| Sampling Frequency   | 48kHz                     |  |
| Spatial resolution   | 5 degrees                 |  |
| NFFT (Number of FFT) | 2048                      |  |
| Frequency resolution | About 23Hz                |  |
| Source position      | Median & Horizontal plane |  |

표 3-1 B&K HATS 의 머리전달함수 측정 실험조건

새롭게 고안한 머리전달함수 측정 장치는 피실험자의 머리 위에 설치된 카메라를 통해 수평면에서의 피실험자의 머리위치를 좌표계의 중심에 맞추게 된다. 카메라는 머리 위 약 1.1m 위에 부착되어 있으므로, 피실험자 머리의 작은 위치변화까지 표현하는데 한계가 있을 수 있다. 따라서 카메라로 비추는머리 위치 변화에 따른 머리전달함수의 왜곡 정도를파악하고, 허용가능 한 최소 범위를 정하고자 한다.머리전달함수는 B&K HATS 를 이용하여 무향실에서 측정하였으며,실험조건은 표 3-1 과 같다.실험은 B&K HATS 을 좌표계의 중심을 기준으로 하여,전후 좌우로 1.5cm, 3cm를 이동시켜 가면 측정하였고,모니터에 비춘 B&K HATS의 이동 모습은 그림3-1과 같다.

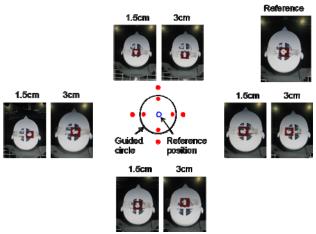



그림 3-1 전후 좌우로 이동시킨 B&K HATS의 모습

머리전달함수는 가상입체음향을 구현하기 위해 필요한 전달함수이므로, 실험장치의 특성에 의해 발생되는 오류라 할 지라도, 사람이 인지하는 데 방해가돼서는 안 된다. 따라서 실험 결과는 모니터를 봤을때 머리중심이 정확히 좌표계의 중심에 놓은 경우를기준으로, 각 조건에 대한 머리전달함수를 2007 년일본의 Nishino 에 의해 제안된 스펙트럼 왜곡(Spectral Distortion: SD)을 통해 살펴보았고, 중앙면과수평면에서 각 조건의 최대 스펙트럼 왜곡을 표 3-

2 에 정리해보았다. 중앙면과 수평면의 동측방향에서 는 B&K HATS 를 각각 1.5cm, 3cm 이동시킨 경우 모두 상당히 낮은 스펙트럼 왜곡, 약 1dB 내외를 나 타냈고, 전체적으로 사람이 인지할 수 있는 최소 음 압차이인 1dB 를 넘지 않기 때문에 사람이 그 차이 를 느끼기 힘들다는 것을 알 수 있다. 수평면의 대 측방향에서도 B&K HATS 를 각각 1.5cm, 3cm 이동 시킨 경우 모두 최대 스펙트럼 왜곡의 차이가 최대 SD 값을 살펴보더라도 6dB 가 안되기 때문에, 방향 을 인지하는 데는 큰 영향을 미치지 않는 다고 판단 할 수 있다. 이러한 실험 결과를 통하여 피실험자의 머리 중심을 좌표계의 중심에 놓으려고 할 때, 약 3cm 이하의 오차는 사람이 방향을 인지하는 측면에 서 큰 차이가 존재하지 않는다는 것을 알았다. 그러 므로 실험결과는 3cm 의 이동도 허용범위 안에 들어 오지만, 보다 정확한 실험을 위하여 안전율을 둔다 고 할 때, 반지름 1.5cm 의 원을 허용 가능한 범위 로 정하고자 한다.

|       |       | Median(L) | Median(R) | Contralateral direction | Ipsilateral<br>direction |
|-------|-------|-----------|-----------|-------------------------|--------------------------|
| Left  | 1.5cm | 0.8234    | 0.8358    | 3.6191                  | 1.0527                   |
|       | 3cm   | 1.0557    | 1.2812    | 3.7437                  | 1.2812                   |
| Right | 1.5cm | 0.7309    | 0.7425    | 2.0354                  | 1.6071                   |
|       | 3cm   | 0.5773    | 0.8668    | 2.9943                  | 0.9191                   |
| Front | 1.5cm | 0.9209    | 1.6127    | 3.3547                  | 1.9522                   |
|       | 3cm   | 1.0152    | 1.7340    | 1.5324                  | 1.1389                   |
| Back  | 1.5cm | 0.7483    | 1.5775    | 5.6690                  | 1.8657                   |
|       | 3cm   | 0.9365    | 1.2280    | 5.0529                  | 1.7789                   |

표 3-2 수평면과 중앙면에서의 최대 SD 값

#### 4. 결 론

본 논문에서는 제안된 새로운 형태의 머리전달함수 측정시스템에 대한 소개와 피실험자가 스스로 머리의 위치를 조절할 수 있도록 하기 위한 최대 허용범위를 정하기 위하여 B&K HATS를 전후 좌우로 이동시켜가며 실험을 진행하였고, 그 결과 사람이 방향을 인지하는 데, 큰 영향을 미치지 않는 범위인지름 1.5cm 의 최대허용범위를 결정하였다.

#### 후 기

이 논문은 한국과학재단을 통해 교육과학기술부의 국가지정연구실 사업(ROA-2005-000-10112-0)과 두뇌 한국 21 프로젝트 일환으로 수행하였음.