음식물 처리기의 소음/진동 저감

The Reduction of Noise and Vibration for the Food Waste Treatment System

김진목* ·김규식** 김영하*·강연준†·김찬묵*·김성진***

Jin-Mok Kim, Kyu-Sik Kim, Young-Ha Kim, Chan-Mook Kim, Yeon June Kang, Sung-Jin Kim

1. 서 론

최근 생활 환경이 다양해지고, 특히 주거 환경, 생활양식의 변화에 따라 가전 제품의 운전음으로 인한 생활 소음이문제가 되고 있다. 본 연구에서는 다양한 가전 제품 중 음식물 처리기의 저진동 저소음화 기술 개발에 대하여 기술하고자 한다.

2. 본 론

2.1 시스템의 소음/진동 특성 분석

(1)시스템 음압 측정

음식물 처리기의 소음을 측정하기 위해 제품의 아랫면을 제외한 5면에 대해 1 m 거리의 간격을 두고 각 면에서 높이의 중앙지점 0.33 m 거리에 마이크로폰을 Fig. 1과 같이설치하였다.



Fig.1 소음 측정 전경

외부 패널이 방사소음에 미치는 영향을 알아보기 위해 패널 장착 및 제거의 음압 측정을 비교한 결과를 Fig. 2에 나타냈다. 외부패널 제거상태에 비해 장착상태에서의 overall 값은 떨어졌으나 100~400 Hz에서는 높은 음압 수준을 보였다. 따라서 패널 방사에 의한 음압 제어가 필요하며, 또한 분쇄기 모터의 작동 주파수인 120 Hz 대역에서의 음압 제어가 필요함을 알 수 있다.

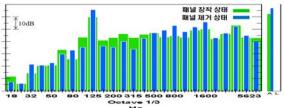
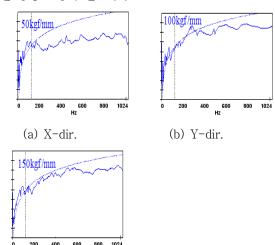



Fig.2 외부 패널 장착 상태에 따른 음압 측정

(2)분쇄기 마운트부의 진동 특성 분석

Fig. 3은 분쇄기 마운트 지지부 4지점에서의 주파수응답 함수(FRF)를 측정한 결과이다. 마운트 지지부의 강성라인을 확인한 결과 모든 방향에 대한 국부 강성값이 150 kgf/mm 미만으로 낮음을 확인하였다. 따라서 마운트 효과의 증대를 위한 강성 보강이 필요하다.

(c) Z-dir. Fig.3 분쇄기 마운트 지지부의 주파수응답함수

(3) 전달경로분석법(Transfer Path Analysis)

각 마운트별 전달 경로를 분석하기 위해 TPA(Transfer Path Analysis)기법을 본 제품에 적용하였다. Fig. 4의 (a) 는 제품의 전방에서 측정한 소음 스펙트럼과 TPA를 이용하여 예측한 결과를 나타내는 것이며 신뢰성이 높음을 확인할수 있다. Fig. 4의 (b)는 전방 소음에 대한 마운트 지지부

[†] 강 연 준; 서울대학교 기계항공 공학부 E-mail: yeonjune@snu.ac.kr Tel:(02)880-1692, Fax:(02)888-5950

^{*} 국민대학교 자동차공학전문대학원

^{**} 서울대학교 기계항공 공학부

^{*** (}주)웅진 코웨이

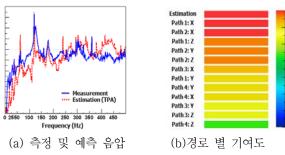


Fig. 4 전달경로분석

4지점의 기여도를 나타내고 있다. 결과를 통해 제품 좌측면 마운트 X방향과 Z방향의 기여도가 높은 것을 확인 할 수 있다.

2.2 시스템의 음압 저감 방법 제시 및 적용

(1)제진재 부착을 통한 패널 방사 소음 저감

제품의 소음을 제어하기 위하여 Fig. 5와 같이 제진재를 제품의 외부 패널에 부착하여 음압을 측정 하였다. 제진재를 제품의 외부 패널(측면 및 뒷면)에 장착하였을 경우 모든 음압 측정 지점에서 방사 소음이 저감됨을 확인하였다. 제진재 부착 전/후의 앞면에서 측정한 결과를 Fig. 6에 나타내었다.

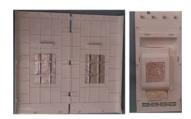


Fig.5 외부 패널 제진재 부착 위치

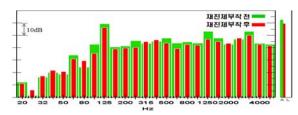


Fig.6 제진재 부착 전/후 음압

(2)마운트 지지부 특성 변화에 의한 음압 저감

기존 마운트 지지부의 강성 증가를 위해 Fig. 7과 같이 제품 좌/우측의 마운트 지지부에 철재 범을 부착하였다. 또한, 보강 지점의 주파수응답함수를 측정하여 강성 변화를 확인한 후 음압을 측정하였으며, 그 결과를 Fig. 8과 Fig. 9에 나타냈다. Fig. 8에서 보듯이 기존 마운트 지지부 보다 보강 상태의 지지부가 X 및 Y방향에 대해 국부강성이 최대 3배 이상 증가했음을 확인할 수 있다. 또한 강성 보강으로인해 마운트의 진동 절연 효과가 증가하여 방사 소음이 4dB 정도 감소하였으며 이를 Fig. 9에 나타내었다.

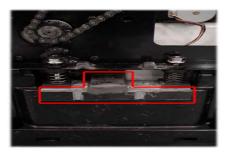


Fig.7 마운트 지지 부 보강

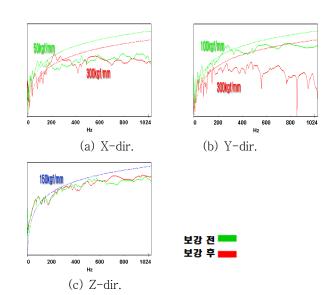


Fig.8 분쇄기 마운트 지지부 보강 전/후의 주파수응답함수

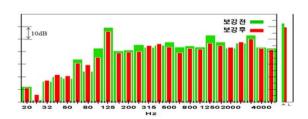


Fig.9 분쇄기 마운트 보강 전/후 음압

3. 결 론

본 연구에서는 음식물 처리기 작동 시 소음을 저감하기 위하여 다음과 같은 2가지 방안을 제시하였다.

- (1) 본 제품의 외부패널에 제진재를 부착할 경우 패널에 의한 방사소음을 저감할 수 있다.
- (2) 압축기 마운트 지지부의 강성 확보를 통해 마운트의 진동 절연율을 높일 수 있으며 이로 인해 시스템의 소음을 저감할 수 있다.

후 기

본 연구는 (주)웅진 코웨이 및 서울대학교 정밀기계 연구 소의 지원으로 이루어졌습니다.