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1. Introduction 

Composites blades have many applications in helicopter 

rotors, turbine engines, wind turbines, only to name a few. 

As a result of the recent study, the application of a 

composite thin-walled beam model is aimed to enhance the 

understanding of the dynamic response performance of the 

blade, and to obtain better representative models capturing 

non classical features. In order to avoid vibration-induced 

fatigue failure and increase the efficiency of blade, vibration 

reduction technology should be implemented. But only few 

studies on vibration control of rotating thin-walled beam 

have found in the previous literatures. In the present study a 

Sliding Mode Control (SMC) methodology is developed 

and applied to control the vibration characteristics of the 

rotating beam under external distributed load and design 

characteristics. The active capability is achieved through the 

converse piezoelectric effect that consisted of the generation 

of localized strains in response to an applied voltage. 

Comparative study with a Linear Quadratic Gaussian 

(LQG), under various dynamic conditions, shows that the 

SMC offers desirable features with respect to the system 

with uncertainties and external load.  

2. Structural modeling of composite thin-walled 

beam 

The geometrical configuration of a single cell composite 

thin-walled beam is shown by Fig. 1. The beam model is 

mounted on a rigid hub (radius R0) and rotates with constant 

angular velocity Ω about origin O. The single cell thin-

walled beam mode includes the primary and secondary 

warping effects and incorporates transverse shear, Coriolis 

effect, and centrifugal acceleration. The beam consists of 

orthotropic composite material, a circumferentially uniform 

stiffness(CUS) configuration is selected as to include 

bending-bending elastic coupling. According to the above 

assumption, the dynamic equation of rotating composite 
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Fig. 1 Geometric configuration of the rotating blade 

thin-walled beam in term of displacement variable, 

considered 3-D displacement, are expressed as 
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In the above equations, u0 (z,t), v0 (z,t), and w0 (z,t) denote 

the rigid body translations along the x, y, and z axes, while 

x(z,t), y(z,t), and (z,t) denotes the rotation about the x, y, 

and z axes, respectively. Furthermore, yz  and xz  represent 

the transverse shear stress in the yz plane and xz plan, 

respectively. While represents the primary warping function 

and represents the secondary warping function. In order to 

obtain coupled bending equation and boundary condition of 

the thin-walled beam, Hamilton’s principle is used such as  
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where δK, δV denote variation of kinetic and strain energy, 

respectively, and δW is expression of the virtual work done 

by the external force. From Eqs. (1), (2), and (3) the 

governing equation of the bending-transverse (flap-lag) 

motion are obtained as Eq. (4). In Eq. (4) u0, v0 are the lag 

and flap displacements, respectively; px, py are surface load 

in each direction (x, y), and mx, my are moments about x- 

and y-axes, respectively; aij(z) and bj(z) denote global 

stiffness and inertia terms, respectively. 
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3. Robust Sliding Mode Control methodology  

The Sliding Mode Control (SMC) is well known for the 

robust control scheme that works well under even in the 

presence of severe environment conditions, such as the 

model uncertainties and various external loads. In order to 

design sliding mode control, the state space equation is 

represented by 
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In eq. (5), A and B matrix consist of mass and stiffness; C is 

the output feedback matrix and F denotes the external load 

vector, while x(t) defines state vector of the rotating blade. 

The control feedback input u(t) obtained by SMC is defined 

as the summation of linear control input (ul) and non-linear 

control input (unl), as described 
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These control inputs, ul  and unl , represented by 
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define a state feedback law and a discontinuous or switched 

component, respectively. In Eq. (7), S and Φ denotes 

switch function matrix and any stable design matrix, 

respectively. ρ(t,x) is a scalar function depending on the 

magnitude of the uncertainties in the rotating blade system 

and P2 is a symmetric positive definite matrix satisfying a 

Lyapunov equation 
T

2 2P Φ+Φ P = -I                           (8) 

where I denotes the identity matrix. Since the above 

robustness properties of the sliding mode control, 

overcomes external disturbance, this control methodology is 

selected as a reliable control system for rotating blade.   

4. Result and discussion 

Using extended Galerkin method, the numerical 

simulation of composite thin-walled rotating blade is 

implemented. As concerns the characteristics of the 

piezoactuators, the ones madeup from PZT-4 piezoceramic.  

The sliding mode observer based control will be 

illustrated through numerical simulations. Figs. 2 and 3 

display uncontrolled and controlled dynamic response of the 

blade subjected to distribute load using Linear Quadratic 

Gaussian controller and Sliding Mode Control, respectively. 

The results show that sliding mode controller provides 

better control performance than Linear Quadratic Gaussian. 

5. Conclusion 

In this study, the vibration control of rotating blade in the 

form of composite thin-walled beam subjected to a 

distributed load was presented. Through the result of 

simulation [see Figs. 2 and 3], it is convinced that the 

Sliding Mode Control strategy appears to be very effective 

to reduce vibration amplitude and possess robustness 

properties. The results presented here are likely to provide 

valuable information to the engineers involved in the design 

and control of advance turbine blades. 
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Fig. 2 Uncontrolled and controlled flapping response via 

LQG controller (Ω = 200 rad/s, θ=60o , σ = 1.0) 
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Fig. 3 Uncontrolled and controlled flapping response via 

SMC controller (Ω = 200 rad/s, θ=60o , σ = 1.0) 
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