Polymerization of Tetraethoxysilane by using Remote Argon/dinitrogen oxide Microwave Plasma

Tae II Chun and Volker Rossbach*

Dong-eui University, Department of Clothing & Textiles, Pusan 614-714, Korea. E-mail: <u>tichun@deu.ac.kr</u>

*Dresden University of Technology, Institute of MacromoleculeChemistry and Textile Chemistry, D-01062 Dresden, Germany.

E-mail: Volker.<u>Rossbach@chmie.tu</u>-dresden.de

1. Introduction

Polymerization of tetraethoxysilane(TEOS) on a glass substrate by using Ar/N₂O microwave plasma was investigated. We have identified that the chemical structure of the samples by X-ray photon spectroscopy, Fourier transformed infrared spectroscopy, and scanning electron microscope combined with Energy dispersive X-ray spectroscopy

2. Experimental

The dense Argon/N₂0 gas plasma was formed using a MW source of the SLAN I type based on the slot antenna principle (JE PLASMA CONSUL, GmbH, Germany, 2KW, 2.46GHz).

3. Results and Discussion

Figure 1 showed ATR spectra of the plasma/TEOS treated and untreated glass for comparison. XPS analysis showed that increasing plasma power and Ar/N₂0 gas flow rate, Si atomic concentration increased

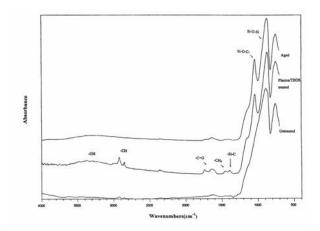


Fig. 1. FT-IR-ATR spectra of untreated and plasma/TEOS deposited glass

Table 1. Elemental composition in atomic % of plasma/TEOS treated samples

Atomic				
$C = c = c = c (\mathcal{O}_{1})$	С	Ο	Ν	Si
Species(%)	1s	1s	1s	2p
Plasma Power				
500 W a	68.31	20.93	0.62	8.56
1,000 W b	22.78	47.96	1.19	23.83

Treatment conditions: a and b the reaction time was 60min, the vacuum pressure 0.5 mbar, TEOS flow rate 0.05slm. \boldsymbol{a} : 0.3 slm Ar / 8.75 vol % N₂0, \boldsymbol{b} : 1.0 slm / 8.75 vol % N₂0.

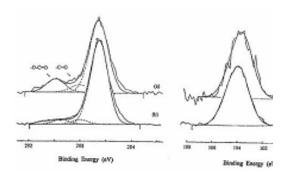
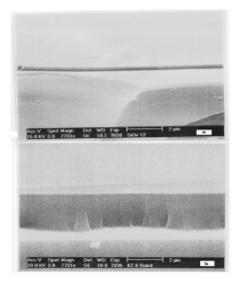
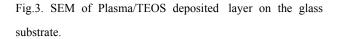




Fig.2. Xps Spectra of the surface of Plasma/TEOS deposited layers.

Treatment conditions: Sample (a) and (b), the reaction time was 30min, TEOS flow rate 0.05slm; (a)0.2mb, 300W, 0.3 slm Ar/8.75 vol % N₂O, (b)0.5mb, 200W, 1.0 slm Ar/8.75 vol %N₂O.

and aliphatic carbons decreased(see Table 2 and Fig.2). The existence of carbon based organic structure containing silicone oxide as suggested. SEM of samples are shown in Fig. 3. The EDXS spectra in Fig.4 and Table 1 showed the chemical composition of the layer. Three peaks typical for C, O, and Si appeared.

Fig. 4. Energy dispersive X-ray spectra of the Plasma/TEOS deposited layer.

Treatment conditions: 0.5 mb, 1,000 W, 1.0slm Ar/8.75 vol% N_2O , TEOS flow rate 0.05slm and reaction time for 60min.

Table 2. Carbon Species in Atomic % of plasma/TEOS

deposited samples.

]	Binding	C-species			
E Plasma Power	Energies	C-C, C-H 285.0eV	C-O 286.5 eV	NH-C=O, -O-C=O 288eV	
500 W <i>a</i> 1,000 W <i>a</i>		60.87 17.79	4.19 1.78	3.64 3.21	

a and *b* conditions are see Table 1.

4. Conclusion

Transparent layer as a thickness of 0.5 μ m - 3 μ m obtained. We have identified that the chemical structure of samples composed of mainly Si-O- and Si-C- groups containing aliphatics, carbonyl groups and also small amount of nitrogen. The existence of carbon based organic structure containing silicone oxide was suggested.

5. References

[1]Hans R. Kricheldorf, Silicon in Polymer Synthesis, Springer-Velag, Berlin, Chapter 7, .408, 1996.

[2] Tae Il Chun, Suk Chul Choi, Christine Täschner, Albrecht Leonhardt, Robert Kaufmann, Carsten Rehwinkel, Volker Rossbach, *J. Appl. Poly. Sci.*, 76, 1207, 2000.