
A Study on Force Feedback Presentation System for Local Domain Based on
Distributed Collision Detection

Tetsuya Takahashi* Kenta Wada* Koichi Konno* Junji Sone** Yoshimasa Tokuyama**

*Graduate School of Engineering, Iwate University

**Faculty of Engineering, Tokyo Polytechnic University
E-mail: t-tetsuya@lk.cis.iwate-u.ac.jp

1． Introduction

Constructing virtual reality (VR) system has become
easy and possible since low-cost and high-performance
hardware becomes popular. The VR technology is
expected for various kinds of application such as virtual
museum, medical engineering, education, video games and
other graphic activities. A lot of element technologies to
construct such VR environments have been studied, while
integrating the element technologies still costs much.
This problem arises because response speed of ordinary
computers is very slow and expensive computers must be
prepared to integrate the element technologies.

One of the solutions about the cost and the processing
speed is to decentralize element technologies. We build a
VR system to disperse a large amount of calculation to a
PC cluster and to integrate the calculation results. In
addition, the client PC generates multiple threads by using
thread programming. By dispersing the processing loops
into two threads, the force feedback presentation thread
and the distributed collision detection thread, the problem
of response speed will be solved.
In this paper, we have studied the virtual touching system

that uses the collision detection with a PC cluster. Our
system realizes high-speed collision with a complex object
that has a large number of polygons and presents force
feedback in a local domain of collision. Using a PC
cluster to calculate collision improves response speed. In
addition, we construct a system to present smooth force
feedback by generating artificial force feedback in the
force feedback presentation thread, where the amount of
calculation is small and processing speed is high.

2. Related Work

The methods of conventional distributed collision

detection have been studied by using bounding box or
Octree techniques to achieve real-time processing [3].
There is a problem, however, that precise collision
detection takes long time if it is performed in a general PC.
The method [4] to speed up the collision detection with
Graphics Processing Unit (GPU) is suggested, although
this method [4] has a problem that the number of polygons

in a model is limited because of the amount of memory in
the GPU. To solve these problems, the method [5] is
suggested that uses a PC cluster where multiple general
PCs are connected, so that a polygon model with a huge
number of polygons can be processed. The PC cluster is
utilized widely in this way, but there are few practical VR
systems that integrate the collision detection and the force
feedback presentation. B. Raffin et al. proposed that a PC
cluster could shorten the calculation time of high-cost
processing such as collision detection [6]. Their
technique needs a special library since it is realized in
UNIX environment and MPI [7] is assumed for distributed
processing.

On the other hand, in the Windows environment, DCOM
(Distributed Component Object Model) [8] is offered for
distributed processing. DCOM is the specifications of the
dispersion agenda technology that Microsoft Corporation
established to exchange data or to communicate for
processing requests in a network. Since DCOM does not
use special software on the Windows OS, a computer
environment can be established easily. In our study, the
DCOM is most suitable because idle PCs are used in a
cluster.

For the force feedback presentation technique, HAPTEX
system [9] that integrates sense of touch, haptic device and
sense of sight is studied broadly at present; for example,
precise force feedback presentation with tolerance of
several grams, haptic device operation, development of
new algorithms about haptic information processing and
development of new haptic devices.

The recent algorithms adopt the structures such as
multi-layer or multi-thread measures to achieve real-time
processing [9], although none of the algorithms suggests
concrete system configuration.

3. Proposal of Virtual Touching System

3.1 Hardware configuration
To realize a virtual touching system described in this

paper, a client-server model shown in Figure 1 must be
constructed. For distributed processing of the huge
amount of calculation in real time, we use the cluster
system where multiple PCs are connected in gigabit
network. In addition, a client PC is connected to the same

470

gigabit network. To the client PC, a haptic device is
connected to present force feedback. In our study, eight
computers are connected to construct a PC cluster. The
CPU of each computer is Pentium4 3.0 GHz with 1.0
Gbyte RAM, connected in gigabit network. As a haptic
device, PHANToM Omni is connected to the client PC.

Fig. 1: Client-server model

Fig. 2: Software configuration

3.2 Software configuration
PHANToM Omni enables high-speed processing of 1

KHz I/O control update rate. In our study, in order to
maintain responses of force feedback presentation, multiple
threads are generated through thread programming and the
processing loops are divided. Figure 2 shows the outline of
the thread processing in the client PC. In the client PC,
two threads are constructed: one for force feedback
presentation and the other for dispersion collision detection.

The thread for dispersion collision detection performs
independent calculation processes. Details of the
processing in each of the threads are described section 3.6.

3.3 Collision detection method using layered
boundary spheres

In our study, collision detection method based on layered
boundary spheres [5] Fujiwara suggested for real time
system construction is used. This method, based on the
concept for which Octree is expanded, generates layered
boundary spheres whose number of faces in the sphere of
the lowest layer will be almost constant.

In Fujiwara’s method, a PC cluster is used to shorten the
calculation time for collision. As the collision detection
method using the layered boundary spheres is distributed in
multiple computers, calculation cost of each computer can
be reduced and the faster processing can be realized.
Details of the technique of how to distribute layered
boundary spheres to a PC cluster are described in section
3.4.

Fig. 3: Procedure of collision detection

3.4 Outline of distribution technique
“Block-cyclic mapping [10]” is one of the distribution

techniques, which can allocate spheres of the nth layer of
object A of Figure 3 to each computer evenly and discretely.
In the block-cyclic mapping, a partial space where a shape
exists is allocated to two or more computers, so that
calculation load is balanced in every computer. Each

Posture data
Force vector

Posture data

 Force feedback

Collision detection

Posture data

CLIENT

Force feedback

PC

 cluster

Draw

Collision detection

Collision data
 Artificial force feedback

SE
V

E
R

First layer First layer

Second
layer

Third
layer

Boundary spheres of object B Boundary spheres of object A

SERVER SERVER SERVER SERVER

HAPTIC DEVICE

OPERATER

Stereoscopic display

Second
layer

Third
layer

471

computer detects colliding faces about the allocated
spheres and the client computer integrates the calculation
results of every computer in the end, so that all collisions
are detected.

(a) (b)

Fig. 4: Appliance attached to PHANToM Omni and a hand
model

3.5 Evaluation of distribution technique
In our study, as Figure 4 shows, the tip of a finger is

linked with the tip of PHANToM pen, so that a system is
constructed in a virtual space where the pen tip of
PHANToM Omni moves synchronously with the hand
model. As an operator uses PHANToM Omni to move
the hand model, the client computer detects collisions
between the hand and an object while cooperating with the
servers. The client computer then integrates the collision
detection results sent from the servers and displays the
integrated results.

Colliding faces of the hand and the horse are displayed
in red to clarify collision faces (Figure 5). In this paper,
the total number of colliding faces of the object and those
of the hand is called “the number of contacts [11]”. The
number of contacts largely influences the time length of
collision detection. The number of contacts depends on
the number of polygons of the hand model and the object
or the contact area. As the number of contacts increases,
calculations for displaying the sense of force will be more
precise and the reality of display polygons will increase.
Then, with variable number of contacts, the time length for
collision detection is measured and the difference of
responses derived from variable numbers (1, 2, 4, 8) of the
servers is evaluated. This evaluation is the most
important subject when a virtual touching environment is
constructed.

In our study, about a hand model (34,432 polygons) and
a horse model (96,966 polygons), we evaluated response
time length while changing the number of the servers (0, 1,
2, 4 and 8) of the PC cluster.

Table1: Number of contacts between a hand and a horse
(compared to the case with no server) (in sec.)

Contacts 0 1 2 4 8

100 0.18 0.25(0.7) 0.23(0.8) 0.31(0.6) 0.53(0.3)

200 0.33 0.32(1.0) 0.27(1.2) 0.33(1.0) 0.55(0.6)

300 0.52 0.33(1.6) 0.37(1.4) 0.36(1.4) 0.59(0.9)

400 0.69 0.54(1.3) 0.47(1.5) 0.42(1.6) 0.64(1.1)

500 1.02 0.64(1.6) 0.44(2.3) 0.43(2.4) 0.67(1.5)

1000 2.32 1.31(1.8) 1.03(2.3) 0.89(2.6) 0.75(3.0)

Table 1 shows the change of response time length when
the number of contacts is about 1,000 or smaller in
collision detection between the hand and the horse. The
boldface numbers in the leftmost column of Table 1 are the
number of the contacts. When the number of the contacts
is about 100, the response time length increase almost
linearly as the number of servers increases. This occurs
because the affine transformation time will be longer than
collision detection time if the number of PCs increases.
As the number of contacts reaches almost 1,000, the
decrease ratio of time for collision detection becomes
greater than the time length for affine transformation, so
that increasing the number of servers decreases the
response time length. Therefore, when the number of
contacts is smaller than 1,000, one or two servers are
suitable for efficient processing. In Table 1, note that the
values in the parentheses indicate comparison of
processing speed to that with 0 server.

3.6 Force feedback presentation method and
thread processing

Generally, in order to contact with an object in a virtual
environment, it is necessary to specify a contact spot and to
calculate the size and the direction of force on the contact
spot. In this paper, the contact spot between the hand
model and the object is obtained by using the technique
described in sections 3.3 and 3.4.

For the force feedback generation with PHANToM
Omni, it is necessary to generate force feedback vectors to
express the size and the direction of the force on a most
suitable point. Figure 6 (a) shows the method to generate
the force feedback vector implemented in our study. Pink
circle of Figure 6(a) shows contact face group between the
hand model and the object. The distances between the
vertices of all contact faces of the hand model and the
centers of gravity of all contact faces of the object are
calculated so that the face of the object model where the
distance is the shortest is obtained. Figure 6 shows the
face of the shortest distance with a square marker. In our

x

z

y

472

technique, the normal vector of the face belonging to the
object is assumed to be the direction of the force feedback
vector. As Figure 6 (b) shows, as a hand model contacts a
face of the object, and the size of the force feedback vector
generates force in proportion to the distance (penetration
distance) that the hand model moves to the object further.
To be concrete, the hand model records the collision face
that contacts with the object first and generates force
feedback according to the face where the shortest distance
is obtained and the penetration distance recorded as the
distance with the collision face.

The equation to perform the force feedback presentation
is expressed by the following expression:

FDbaPDF *)*))((log((1)

where F is force to be feedback, PD is the penetration
distance between collision face and face of shortest
distance, FD is the force feedback vector provided from a
collision face, and a and b are constants by the experience
value, value of a is 3.0, value of b is 0.8.

A logarithmic function is available to obtain force
feedback due to touching an object more definitely than
force feedback presentation by using a simple spring
model.

If two or more collision faces are obtained, the method
mentioned above can generate force feedback vectors.
Figure 5 shows an example of touching simulation with a
hand model and a horse model. The contact faces
between the hand model and the horse model are displayed
in red, which indicates that collision occurs on multiple
spots. Since the I/O control update rate PHANToM Omni
is 1 KHz, force feedback is not generated continuously if
calculation time of collision detection is long. This is the
problem that it is difficult to generate the continuous and
smooth force feedback.

Then, as described in section 3.2, the client PC generates
two threads, force feedback presentation and distributed
collision detection, so that the force feedback presentation
continues during collision detection. The consistency of
the force feedback presentation can be maintained by
separating a processing loop. Figure 2 shows the outline
of the configuration of the processing. The thread of
force feedback presentation performs the processing to
show force feedback in PHANToM Omni, and the hand
posture data of Proxy provided from PHANToM Omni is
sent to the dispersion collision detection thread. Based on
the posture data, the dispersion collision detection thread
detects collision by using the PC cluster. From the
collision face data obtained through the collision detection,
a force feedback vector is generated with using the method

mentioned earlier and the vector is sent to the force
feedback presentation thread. The force feedback
presentation thread, based on the force feedback vector,
generates force feedback of expression (1). Since writing
the posture data and the force feedback vector shown in
Figure 2 performs exclusive control, the force feedback
vector cannot be obtained during data writing.

In addition, since the processing of collision detection
thread needs almost 25 times longer time than that of force
feedback presentation thread, an artificial force feedback
vector is generated until the next data is obtained.

Fig. 5: Sample touching simulation between a hand model
and a horse model

(a) (b)
 Fig. 6: Generation of force feedback vector

3.7 Artificial force feedback generation
The artificial force feedback vector suggested in our

study is generated based on the amount of movement of the
hand model and the force feedback vector before the
movement. In our technique, the force feedback vector
after the movement is estimated from the amount of
movement of the hand model. By adding the vector of
the movement to the force feedback vector before
movement, an artificial force feedback is generated to
interpolate the force feedback vector before the movement
and the one after the movement. As shown in Figure 7,
vector D is added to force feedback vector A before
movement of the hand model, so that artificial force
feedback vector B is generated to interpolate vector A and

Force feedback vector

Face of shortest distance

Force feedback vector

Penetration
distance

Contact face group

Object Collision face

Collision face

Hand model

473

force feedback vector C after the movement.
Figure 8 shows the force feedback vectors of Figure 7,

which can present smooth force feedback.

Fig. 7: Artificial force feedback

Fig. 8: Artificial force feedback vector

4. Results and Consideration

Our study aims at real-time virtual touching simulation.

On this viewpoint, although the number of the contacts
varies according to objects with the different numbers of
the polygons, it is expected that processing must be as
close as real time. Therefore, in order to clarify the most
suitable number of servers for a PC cluster for different
number of polygons and contacts, the four models are
examined: the hand model of Figure 4, the horse model of
Figure 5, a boat model, and a model subdivided by Loop
subdivision method [12] so that the number of the
polygons will be four times greater than the polygons of
the boat. The hand model has 37,248 polygons, the horse
model has 96,966 polygons, a boat model has 194,092
polygons and a subdivided model has 776,368 polygons.
About these four models, the time length of force feedback
presentation in local area is calculated based on dispersion
collision detection method. In the experiment, two kinds
of callbacks are counted: one is HL FPS that represents the
number of times of force feedback presentation callbacks
in one second and the other is GL FPS that represents the
number of times of drawing callbacks in one second. The
result is compared with the sample program attached to
Open Haptics toolkit where a similar technique is provided.

The time length is calculated with different numbers of
servers (0, 1, 2, 4 and 8) and the difference of the response
from the sample program is evaluated. The results are
shown in Tables 2 and 3. As Table 2 shows, HL FPS and
GL FPS decrease as the number of polygons increases in
the sample program. The reason of this result is assumed
that only one thread performs force feedback presentation,
interference calculation and drawing with using haptic
library. If collision detection or drawing takes long time
due to a great number of polygons, force feedback
presentation would take long time accordingly. Moreover,
for an object having a great number of polygons, it is hard
to present real-time force feedback. If an object has
200,000 or more polygons, force feedback is hardly
presented. On the other hand, with our technique, as
shown in Table 2, although the number of polygons
increases, frame rate for collision detection does not affect
so seriously to force feedback presentation or drawing,
since the processing of force feedback presentation,
collision detection and drawing are separated into each
processing loop.

Table2: Result of comparison between a sample program
and the technique suggested (FPS)

Table3: Increase of the number of servers and the number
of contacts (Interference calculation FPS)

From these results, it is thought that our technique can

be applied to force feedback presentation for an object
having the huge number of polygons. The response of
collision detection with using a PC cluster is described in
Section 3.5. When the number of contacts (total number
of collision faces between a hand model and an object) is
smaller than 1000, one or two servers are the most efficient
to present force feedback; while for 1,000 or more contacts,
the more the servers are used, the more effective the force
feedback is presented. A similar conclusion can be found
in the experiment result shown in Table 3.

A

B C

Hand model

Object
D

A

B

C

D

F P S H L G L H L G L

B a l l (9 6 0) 7 8 0 . 5 4 6 8 . 3 8 1 0 0 0 9 2 . 9 1

H o r s e (9 6 , 9 6 6) 6 . 2 1 4 5 . 4 1 0 0 0 2 4 . 3 9

B o a t (1 9 4 , 0 9 2) 2 . 7 4 1 6 . 8 3 1 0 0 0 9 . 6 2

B o a t (7 7 6 , 3 6 8) 1 . 3 8 6 . 3 3 1 0 0 0 2 . 6 5

S a m p l e T e c h n i q u e s u g g e s t e d

Contacts 100 1500 100 1500 100 1500 100 1500

0 2.25 0.12 2.19 0.09 1.29 0.08 0.99 0.07

1 4.65 0.26 2.26 0.11 2.33 0.13 1.55 0.19

2 4.78 0.43 1.82 0.22 2.74 0.21 1.72 0.22

4 2.44 0.69 3.34 0.37 1.83 0.66 1.66 0.43

8 1.62 0.42 1.78 0.71 1.67 0.57 1.43 0.46

Ball (960) Horse (96,966) Boat (194,092) Boat (776,368)

474

5. Conclusion and Future Works

In this paper, the method to construct a virtual touching

system based on the distributed collision detection by using
a PC cluster is described. In our technique, the force
feedback presentation, collision detection and drawing are
performed in separate threads. Separating collision
detection of force feedback presentation from the force
feedback presentation loop maintains consistency of force
feedback presentation, except time lag of the force
feedback presentation. Generating artificial force
feedback in the force feedback presentation thread can
present smooth force feedback presentation. Therefore,
with our technique, force feedback can be presented for an
object having huge number of polygons, for which the
sample program of Open Haptics toolkit cannot present
force feedback. In addition, distributing collision
detection to computers in a PC cluster reduces calculation
time of each computer, which can improve entire
performance.

Acknowledgement
This work was partially supported by KAKENHI
(20500880).

REFERENCES

[1] Yoshifumi Kitamura, Narendra Ahuja, Haruo Takemura,
and Fumio Kishino, “Colliding Face Detection among 3-D
Objects using Octree and Polyhedral Shape
Representation”, The journal of JRSJ, Vol.14, No.5,
pp121-130, 1996
[2] Tetsuya Yokoyama, “Soft Object by Finite Element
Method with Condition of Constraint in Contact Point”,
The Journal of VRSJ, Vol.10, No.2, pp241-248, 2005
[3] Kenichi Kobori, Daisuke Nakanishi, “A Fast Collision
Detection Using Filled Spheres”, The journal of IEICE
Vol.J85, No.9, pp.1455-1463, September 2002.
[4] Yoo-Joo Choi, Young J. Kim, Myoung-Hee Kim,
“Rapid Pairwise Intersection Tests Using Programmable
GPUs”, The Visual Computer, Vol. 22, No.2 , pp. 80-89,
2006
[5] Shinya Fujiwara, Koichi Konno, Junji Sone, Yoshimasa
Tokuyama, “A Method for Exact Collision Detection of
Faces with Layered Boundary Spheres”, The Journal of
IIEEJ Vol.35, No.1, pp. 20-29, 2006
[6] B. Raffin and L. Soares, “PC Clusters for Virtual
Reality”, IEEE Virtual Reality Conference, 2006
[7] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message-Passing
Interface, Scientific and Engineering Computation Series,
The MIT Press, 1994

[8] FRANK E. REMOND III, DCOM development guide,
Shoeisha Publishers, 1998
[9] M. Bergamasco and F. Salsedo et. al, “High
Performance Haptic Device for Force Rendering in Textile
Exploration”, The Visual Computer, Vol. 23, No. 4, pp.
247-256, 2007
[10] Peter S. Pacheco, Parallel Programming with MPI,
Baifukan Publishers, 2001
[11] K. Wada, K. Konno, J. Sone, Y. Tokuyama, “An
Investigation of Calculation Performance to Construct a
VR System Based on Distributed Collision Detection”,
Proceedings International Workshop on Advanced Image
Technology, pp. 153-158, 2007
[12] C. T. Loop, “Smooth Subdivision Surfaces Based on
Triangles”, Master’s thesis, University of Utah, 1987

475

