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ABSTRACT 
 
This paper proposes a method to estimate the flow speed of 
pedestrians in surveillance videos. In the proposed method, 
the average moving speed of pedestrians is measured by 
estimating the size of real-world motion from the observed 
motion vectors. For this purpose, pixel-to-meter conversion 
factors are calculated from camera geometry. Also, the 
height information, which is missing because of camera 
projection, is predicted statistically from simulation 
experiments. Compared to the previous works for flow 
speed estimation, our method can be applied to various 
camera views because it separates scene parameters 
explicitly. Experiments are performed on both simulation 
image sequences and real video. In the experiments on 
simulation videos, the proposed method estimated the flow 
speed with average error of about 0.1m/s. The proposed 
method also showed a promising result for the real video. 
 
Keywords: Video surveillance, flow speed estimation, 
motion vectors 
 

1. INTRODUCTION 
 
For the last decade, there have been diverse efforts to 
develop intelligence video surveillance systems. Intelligent 
video surveillance systems aim to interpret scenes, detect 
suspicious events, and alarm human operators to prevent 
accidents. Research efforts for such intelligent systems 
include measurement of crowd density [1], detection of 
unusual events [2], or recognition of abandoned objects [3]. 
Although previous research efforts have covered such 
various issues, measuring pedestrian flow speed has 
received less attention despite its importance. Flow speed 
of pedestrians provides a means to detect unusual events 
(e.g., congestion, blocking or emergency) in a global 
manner. Also, it is essential information to develop 
pedestrian traffic models, which is used in designing 
buildings or planning evacuations [4]. 

In [5], Teknomo et al. proposed a data collection system 
for pedestrian flow analysis. The proposed system 
automatically detects moving objects, tracks them and 
stores their locations with time stamps. Using obtained data 
of individual movements, it was able to observe 
characteristics of pedestrian traffic flow such as speed of 
individuals, flow rate or average speed and directions. 
However, their method is limited to video sequences 
obtained from a top-view camera and could not guarantee 

its performance to videos with lower viewing angles. 
Shimmura et al. proposed a method to estimate 
human-flow speed [6]. In their method, average moving 
speed of pedestrians was estimated from motion vectors. 
To transform motion vectors of a video frame into moving 
velocity in the real-world, scaling factors were utilized that 
were acquired from a series of simulation images. However, 
only one fixed camera setting is used to create simulation 
images in their method. Moreover, because the formula for 
conversion between motion vectors and real-world speed 
implicates camera parameters, it is not proven that the 
same scaling factor can be effectively applied to different 
camera views. 

In this paper, we propose a method to estimate the flow 
speed of pedestrians from surveillance videos. Estimation 
of moving velocity is achieved by converting motion 
vectors from image domain to physical domain. For this 
purpose, pixel-to-meter conversion factors are computed 
from camera geometry directly. Also, to overcome the 
ambiguity of motion vectors (due to the 2D camera 
projection), we estimate the real-world height of the 
observed motion vector statistically. This motion height 
estimation function is obtained using a set of simulation 
image sequences. Unlike the flow speed estimation method 
in [6], our proposed method can be applied to various 
scenes by separating scene parameters explicitly.  

Rest of this paper is organized as follows. In Section 2, we 
introduce the flow speed estimation method. Section 3 
explains simulation experiments to overcome the problem 
of ambiguity of motion projection. Section 4 gives 
experimental results and Section 5 concludes this paper. 

2. FLOW SPEED ESTIMATION FROM 
MOTION VECTORS 

 
In this section, the proposed method for pedestrian flow 
speed estimation is explained. For further explanation, an 
example of a real-world motion and its projection onto the 
image plane is illustrated in Fig. 1. As shown in the figure, 
when a motion vR occurs in the real-world, it appears as a 
motion vector vI on the image plane. Our goal is to 
measure the overall flow speed of pedestrians by 
estimating the size of vR and taking an average of them. 
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Fig. 1: Projection of a motion onto an image plane 

To estimate the speed of real-world motion (the size of 
motion vector vR), we first compute conversion factors that 
transforms pixel units to physical units (meters). Assume 
that a motion vector of unit length (from pixel pi to pj) is 
observed as in Fig. 2. It is assumed that the camera focal 
length f and camera tilt angle θc are already known. With 
known camera viewing angle and image resolution, we can 
compute the tilted viewing angle from optical center θi for 
each pixel position pi. 
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Fig. 2: Conversion from pixels to meters 

From these parameters, we can easily compute the 
pixel-to-meter conversion factor dy/dv as 

{ }tan( ) tan( ) .p c j c i
dy h
dv

θ θ θ θ= − − −
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Also, hp in Eq. (1) is calculated by 
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In Fig 2, we only showed the conversion factor for vertical 
direction, dy/dv. The conversion factor for horizontal 
direction, dx/du can also be easily obtained by dividing the 
width of CCD sensor with image resolution. These 
pixel-to-meter conversion factors (dx/du and dy/dv) and 

distance from optical center hp are pre-computed and stored 
for all pixel positions in the image frame. 
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Fig. 3: Estimation of the size of the real-world motion 

Using the conversion factors, we can expect the size of 
real-world motion by a simple trigonometry as shown in 
Fig. 3. In the figure, vI’ is obtained from vI by the 
pixel-to-meter conversion factor. Hence, the size of vR can 
be expected by 
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Finally, the overall speed of pedestrians is computed by 
averaging all motion vectors for image frames as Eq. (4). 
Here, ||vR(i, t)|| indicates the size of motion caused by ith 
motion vector at frame t. Also, notice that the motion sizes 
are weighted by wi to compensate the pixel size variation 
caused by camera projection as in [1].  
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3. EXPECTING THE HEIGHT OF 

REAL–WORLD MOTION 
 
Using the method introduced in Section 2, we can estimate 
the flow speed of pedestrians from motion vectors. 
However, there still is one more problem that the vertical 
distance between camera position and the real-world 
motion he cannot be determined from input video. It is 
because depth (distance from camera) or height of the 
real-world motion is missing due to camera projection. Fig. 
4 shows some examples of this problem. As illustrated in 
Fig. 4 (a), a vector vI on the image plane can come from 
various motions with different depths or heights. The 
observed motion vectors in Fig. 4 (b) may be due to motion 
of different parts of pedestrians as in Fig. 4 (c) and (d). 

One of the easiest ways to solve this problem is simply to 
assume that all motions are occurred on the same plane 
having the same value of he. By setting the value of he as 
the average height for all motion vectors in the frame, the 
flow speed could be estimated properly. However, the 
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average value of he for all motion vectors will be changed 
for different scenes. Hence, we expect the height of motion 
vector in real-world statistically. 

vI

Image Plane

 
(a) (b) 

 
(c) (d) 

Fig. 4: Ambiguity of projected motion 

To begin with, we consider the factors that influence the 
observation of motion vectors and their expected height in 
the real-world. Fig. 5 shows an example of motion 
observation for two pedestrians. In the figure, motions 
occurred in shaded area will not be observed in the video 
frame. The amount of visible area for the occluded 
pedestrian can be expressed as d / tan θ, where d is the 
distance between two people and θ is the viewing angle. As 
the visible area decreases, the expected height of observed 
motion vector will arise because motions from lower part 
of the human are missed. Hence, the expected real-world 
height of an observed motion vector follows a relationship 
in Eq. (5). Here, the crowd density defined by the number 
of people in a unit area becomes inversely proportional to 
the average distance between pedestrians. 

1 tan  
tan

height crowd density
d

θ
θ

∝ ∝ ⋅  
(5) 

d

d / tan θ

θ

 
Fig. 5: Relationship between the amount of occlusion, 
inter-person distance and camera angle 

As in Eq. (5), the height information of an observed motion 
vector can be estimated using a function of viewing angle 
and crowd density. To train the function for height 
estimation, we used a simulated video consisted of a set of 
synthetic image sequence. The simulation video is obtained 
by modeling humans as ellipsoids and controlling their 

movements using the microscopic pedestrian model 
proposed in [5]. About 10,000 simulation images are 
created with varying camera angles and crowd density. 
Using the simulated video, a quadratic function as the 
height of motion vectors in real-world from viewing angle 
and crowd density is trained. Fig. 7 shows the resulting 
function for height estimation of real-world motions. As 
expected, the trained function in Fig. 7 increases to 
coincide with Eq. (5). That is, it increases similar to a 
tangent function along the axis of viewing angle and to a 
square root function with the axis of crowd density, 
respectively. 

 
Fig. 6: An example of a synthetic image for simulation 

 

H
eight

 
Fig. 7: Height estimation function trained from synthetic 
images 

4. EXPERIMENTS 
 
In this section, we present results of experiments to verify 
the proposed method. One of the difficulties in the 
experiments is that the actual speed of pedestrian flow is 
not easy to measure. Hence, we used two types of dataset: 
simulated video and real one. The simulated video was 
prepared by replacing human image to the ellipsoids while 
moving them according to the pedestrian movement model 
in [5]. Fig. 8 shows examples of dataset for simulated one 
and real video, respectively.  

 
(a) (b) 

Fig. 8: Examples of (a) a synthetic image and (b) a scene 
from the real video for experiment 
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Fig. 9 shows flow speed estimation results for the 
simulated video. Since positions of each pedestrian are 
known in advance during the generation stage, accurate 
flow speed can be easily obtained for every frame of the 
simulation. Image sequences from three different camera 
angels (30°, 45° and 60°) are used for the test. Average 
errors of the flow speed were 0.102 m/s, 0.085 m/s and 
0.067m/s for each set. 

Fig. 10 gives the speed estimation result for the real scene. 
Because it is very difficult to obtain actual flow speed from 
real video frames, the actual flow speed is measured 
manually by tracking head positions of people in a frame 
and projecting them inversely with known geometry. The 
manual estimation is performed for every 500 frames. The 
solid line in Fig. 10 indicates the estimated flow speed 
obtained by the proposed method. Also, the result of 
manual estimation is marked with red squares. 

5. CONCLUSION 
 

In this paper, we proposed a method for pedestrian flow 
speed estimation. Proposed method estimates the flow 
speed by predicting the size of motion in the real-world 
from motion vectors in image domain. Pixel-to-meter 
conversions factor are employed to convert motion vectors 
from the image domain to the physical domain. Also, the 
height information, which is missing because of camera 
projection, is predicted statistically using a  simulated 
video. Unlike the previous method that is limited to a 
certain view point, our proposed method incorporates 
camera geometry to cope with the parameters needed for 
various scenes. For experiments, other sets of simulated 
and real video were used. Experiments on the simulated 
video showed that our proposed method can effectively 
estimate the flow speed with lesser error than or about 
0.1m/s. Similar performance was measured for simulated 
videos at different camera angles. The proposed method 
also showed a promising result for the real video. 
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(b) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
11

4
22

7
34

0
45

3
56

6
67

9
79

2
90

5
10

18
11

31
12

44
13

57
14

70
15

83
16

96
18

09
19

22
20

35
21

48
22

61
23

74

Estimation

Real

Frame Number

Flow
 Speed (m

/s)

 
(c) 

Fig. 9: Estimation results for synthetic image sequences 
with camera tilt angle of (a) 30°, (b) 45° and (c) 60° 
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Fig. 10: Flow speed estimation result for real video 
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