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ABSTRACT

In order to design a good quantizer for the underlying dis-

tribution using a training sequence (TS), the traditional ap-

proach is seeking for the empirical minimum based on the

empirical risk minimization principle. As the size of TS in-

creases, we may obtain a good quantizer for the true distri-

bution. However, if we have a relatively small TS, search-

ing the empirical minimum for the TS causes the overfit-

ting problem, which even worsens the performance of the

trained codebook. In this paper, the performance of code-

books trained by small TSs is studied, and it is shown that

a piecewise uniform codebook can be better than an empir-

ically minimized codebook is.

1. INTRODUCTION

Quantizer design is to find the reproduction levels and the

corresponding quantizer regions, which minimize the aver-

age distortion yielded by the underlying distribution, for a

fixed number of levels. Even though there is no explicit so-

lution for the quantizer design problem, efficient algorithms

are available by Lloyd and Max [1]. The Lloyd algorithm is

generalized for vector inputs by Linde et al.. This algorithm

is called the generalized Lloyd Algorithm (GLA). GLA can

use the training sequence (TS) drawn from the underlying

distribution if the distribution is not explicitly known. Us-

ing TS in designing vector quantizers is common as shown

in an image coding scheme recently proposed by Mukherjee

and Mitra [6].

When we use TS instead of the explicit distribution func-

tion, the traditional algorithms usually minimize the empir-

ical distortion yielded by TS. Note that the empirical dis-

tortion yielded by an empirical distribution is different from

the average distortion yielded by the true distribution func-

tion. However, based on the empirical risk minimization

principle, which is supported by a work of Pollard [7], we

may obtain a good codebook by minimizing the empirical

distortion as the TS size increases. In other words, the tra-

ditional codebook design algorithms focus on searching an

empirically optimal codebook for a given TS. However, we

may surmise that simply searching the empirical minimum,

for a given TS, is not the best approach in designing a good

codebook for the underlying distribution since the TS size

is usually finite. Further, we sometimes observe the case

that the locally optimal codebook designed by GLA can be

better than the globally optimal case [3].

In this paper, the performance of codebooks trained by

small TSs is studied, and it is shown that a uniform code-

book can be better than an empirically minimized codebook

is, especially for small TSs. The performance of a piece-

wise uniform codebook is then studied to improve the per-

formance of the uniform codebooks for the small TS case.

2. PRELIMINARY

Let
�

denote the underlying distribution function. The quan-

tizer design problem for
�

is to find a set that minimizes the

average distortion defined by

���� �� � �	
��
�� ����� ����
over all possible choices of the codebook

� � �
, of which

size is �. In this paper, we consider a scalar quantizer design

problem. We may extend the analysis to the vector quan-

tizer case by constructing a piecewise uniform vector quan-

tizer [5]. Let
��

denote an optimal codebook if
����� �	
�
 ����

. We call
�����

the optimum, which is assumed����� �� �. Suppose that ����� � � � ��� are independent,

and identically distributed random variables taking values in�
with

�
. Let ��� � � � ��� denote a finite TS and � denote

the TS size. For a codebook
�

, we define the empirical dis-

tortion as

����� ��  �
�!"#��	
��
��" �����

where we suppose that $%��& ' (
. Let

��� denote a

codebook that minimizes
�����. We call

��� and
������� ���	

 ������

an empirically optimal codebook and the em-

pirical minimum, respectively.

We now briefly overview the bias formed by the trained

codebook, and the convergence rate as a function of the

training ratio ) [1], which is defined by the ratio of the

TS size to the codebook size, i.e., ) �� �*�. Note that the
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training ratio is an important parameter in designing code-

books [3]. It is known that the bias between $%�������&
and the optimum

�����
has a form of )+,, which will be

decreased as the TS size � increases, in the following form:

$%������& ������ � -)+,�
where . / � and - 0 �, and the sequence

�-�� is bounded.

Hence, increasing the training ratio for a given TS is very

important in reducing the bias between the designed code-

book and the true optimal codebook. In other words, the

bias is quite large if the training ratio is relatively small.

Hence, if we have a small TS, then simply designing the

codebook based on seeking to find the empirically optimal

codebook could be an inefficient approach due to the large

bias.

3. CODEBOOKS FOR SMALL TS

As shown in some experimental results of [3], where � �1
, the codebooks designed by GLA could be better than

empirically optimal codebooks for both the Gaussian and

Laplacian densities. In [3, Fig. 2], it is clear that the de-

signed codebooks by GLA are locally optimal for the given

TS. However by experiment, we may notice that the perfor-

mance of the designed codebook is better than the empiri-

cally optimal codebooks. Further, in order to solve the local

minimum problem of GLA, if we use the simulated anneal-

ing method, then the method could even deteriorate the per-

formance of the designed codebook for the scalar quantiza-

tion case. Hence, simply reducing the empirical distortion

is not the best approach in codebook designing.

Imposing a constraint upon a structure of the codebook

obvious prevents designing an optimal codebook. How-

ever, this constraint can generalize the trained codebook for

a small TS. The structure of the piecewise uniform code-

book may also be good for small TSs. In order to analyze

the performance of a uniform and piecewise uniform code-

books for a small TS, we will observe two important no-

tions, which are concerned with changing the training ratio.

The first notion is developed from increasing the train-

ing ratio ) for a fixed bit rate as follows. It should be

noted that the training ratio can be different depending on

the structure of the quantizer. In other words, ) � �*� can

be different depending on the quantizer structure since �
can be different for a fixed bit rate. Structurally constrained

quantizers can have better (or larger) training ratios than the

full-search quantizer case, for a given bit rate [3]. For exam-

ple, if we consider a multistage vector quantizer [1, p. 451]

and use the same size of two codebooks for the two stages,

then the training ratio increases to �*2� compared to the

normal training ratio �*� [3, Eq. (6)]. Hence, structurally

constrained quantizers can have better training ratios than

the conventional full-search quantizer case, which implies

that the structurally constrained quantizer can yield even

better training performance than the full-search quantizer

case.

The second notion is devised from the fact that a fixed

codebook can be better than the trained codebook. If we

have too small TS, then searching the empirically optimal

codebook is overfitting the codebook to an particular em-

pirical distribution, which is very different from the true

distribution. Designing codebooks for such small TS could

worsen the codebook performance. Hence, we may reach

a fact that, if we have too small TS, then we should simply

use a fixed codebook, such as the uniform codebook instead

of clustering the TS.

In the next section, the performance of the piecewise

uniform codebook is numerically investigated based on the

notions: increasing training ratio and fixed codebooks.

4. PIECEWISE UNIFORM CODEBOOKS

In order to analyze the performance of the piecewise uni-

form codebook, we first compare the performances of the

empirically optimal and uniform codebooks for a simple

density relying on the notion about fixed codebooks. We

then extend the approach to a general case by increasing the

training ratio, which is another notion in the previous sec-

tion.

Suppose that we design a two-level codebook for a given

TS, which is drawn from the underlying distribution func-

tion
�

. The conventional approach is finding an empirically

optimal codebook for the TS. Here, we may employ GLA

to find an empirically optimal codebook with low searching

complexity. However, there exist better codebooks than the

empirically optimal codebook. Let us consider the uniform

codebook as a fixed codebook, and we will check whether

this uniform codebook could be the codebook that is better

than the empirically optimal codebook for a certain distri-

bution function. In other words, we will show a case where

the uniform codebook could be better than the trained code-

book.

We consider a density 3456, which is described by a con-

stant 7 �878 9 1:��
for a given positive

:
as follows:

3456��� �� ; 7� < : �7*1:� for � = >��  *:?�� otherwise@
3A56 implies a uniform density defined on >��  *:?. Let

�
U
��% *B:�C*B:&denote a uniform codebook.

�
U is the optimal

codebook for 3A56 when � � 1
[7]. Note that the inverse of878 implies uniformity of the density 3456. Suppose that

�
has the density 3456. The average distortion of

�
U is then

given by
���

U
� �  *BD:�, which is independent of the

constant 7. If
878 �� �, then there exits an optimal codebook��

such that
����� ' ���

U
�
. Hence, it is obvious that the

uniform codebook
�

U is not optimal for 3456 for
878 �� �.
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Fig. 1. Empirically optimal and uniform codebooks for 3456
and

���
U
� �  *BD with respect to the training ratio ),

where
: �  and � � 1

. (a) Empirical minimum and av-

erage distortion curves for 7 �  *1. (b) Average distortion

curves of empirically optimal codebooks for 7 �  *1, 1,

and C*1.

Further, for a given TS, which is drawn from 3456, we have����
U
� / �������

, and we have a strict relationship:

$%����
U
�& 0 $%�������&

since $%����
U
�& � ���

U
� / �����

and
����� 0$%�������&

from [4, Theorem 1]. In other words,
�

U

could be different from the empirically optimal codebook���. Note that the elements of
��� are random variables

defined on the underlying distribution. The expectation of������
has a bias as a function of the training ratio ) from

the optimum
�����

. Here, the bias decreases as ) in-

creases. On the other hand, the uniform codebook
�

U also

has a bias
���

U
� ������

, which is fixed. Hence,
���

U
�

could be lower than $%������&
for relatively small train-

ing ratios.

In Fig. 1, numerical results for the density 3456 are illus-

trated for different values of 7 for a fixed
: �  with respect

to the training ratio1. Here, GLA is employed to design an

empirically optimal codebook for the given TS2. We usu-

ally obtain the average and empirical distortion curves of the

form as in Fig. 1(a) in training codebooks [4]. Even though

GLA does not guarantee the global optimum (empirically

optimal codebook), we suppose that the empirical distortion

of the trained codebook
�� is equal to or very close to the

empirical minimum
�������

, i.e.,
������ E �������

.

As we may notice in Fig. 1(b), the fixed uniform codebook

1In the figures, the distortion curves are numerically calculated by per-

forming the expectations over 1,000 sample distortions.
2For such large TSs, obtaining the empirically optimal codebooks is

very difficult due to the computational complexity. Hence, we employed a

clustering algorithm, such as GLA, in order to reduce the complexity.

�
U can be better than the trained codebooks, and as the

slope 7 increases, the maximum training ratio, where
�

U

is better than
��, is decreased. For the case of 7 �  @� in

Fig. 1(b),
�

U is better than the codebooks
��, which are

trained at ) ' 1�. However, for the case of 7 � C*1,
�

U is

better than
�� for ) '  � since the uniformity described by

the inverse of
878 is decreased. From the numerical obser-

vation in Fig. 1, we may notice that the uniform codebook

can be better than the trained codebook for the given TS for

relatively small training ratios. In other words, for a certain

class of distributions, simply using the uniform codebook

will provide a better performance if we have a small TS.

For a general distribution with larger codebooks, how-

ever, simply using the uniform codebook does not guaran-

tee the better performance. Hence, we need to modify the

uniform codebook to the piecewise uniform codebook for

general distributions. Instead of using a uniform codebook,

we may use a codebook, which has flexibility introduced by

the given TS. The purpose of introducing the flexibility is

to adapt the codebook to the underlying distribution. We

now consider a simple approach, which can reflect the true

distribution in designing codebooks. First, we divide the

density 3456 into two intervals by clustering the TS. Hence,

the divide between two intervals is given by the midpoint

of the cluster centers. We assign two levels to each inter-

val, and then design two different uniform codebooks for

the two intervals, respectively. Note that the resultant code-

book is a piecewise uniform codebook. A numerical com-

parison on this piecewise uniform codebook is illustrated in

Fig. 2. As we may notice in Fig. 2, the piecewise uniform

codebook shows a better performance than the traditionally

trained codebook for a fixed training ratio. Further, for an

appropriate range of training ratios, the piecewise uniform

codebook is better than the uniform codebook, e.g., ) 0  �
in Fig. 2(a), where 7 �  *1. For the 7 � C*1 case in

Fig. 2(b), we can clearly observe that the empirically op-

timal codebook is the best for ) /  ��. However, for1 ' ) '  ��, the piecewise uniform codebook shows the

best performance, and for ) 9 1
, the uniform codebook is

the best.

5. NUMERICAL RESULTS

We now summarize the piecewise uniform codebook, which

is used in the paper for a performance analysis. We consider

bounded F �� �*�G� intervals, where F and �G are positive

integers. we divide the input into F intervals using GLA

by clustering the given TS into F clusters. We then obtainF quantizer intervals, which are the F intervals in the pro-

posed algorithm. Note that the training ratio when designingF clusters is increased to ) � �G � �*�, which is �G times

larger than the �-level clustering case () � �*�). Hence,

the obtained F quantizer intervals are closer to the desired

intervals for the real density H than the � level case, in terms
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Fig. 2. Uniform and piecewise uniform codebooks for 3456
with respect to the training ratio ), where

: �  and � � B
.

(a) 7 �  *1. (b) 7 � C*1.

of the bias of the average distortion. In each quantizer in-

terval, we next uniformly add �G levels to make an �G-level

uniform codebook. We consider a truncated Gaussian den-

sity IG
G

defined as

IG
G

��� �� ; IG

���*JG � for
8�8 9 K�� otherwise@ (1)

Here,
K

is a positive constant, JG

�� LMNMOP IG

�����, andIG is a Gaussian density given by IG

��� �� Q+NRS�*21T.

Fig. 3 shows the performance of the piecewise uniform code-

books, for the � � D
and  U cases. Here, the size of each

uniform codebook is �G � 1
, and for the densities of IG

G
,K � 1

and
K � C. We first consider the

K � 1
case, whereJ

G

E �@VWB. For the � � D
case in Fig. 3(a), the piece-

wise uniform codebook is better than the empirical mini-

mum case when ) 9 U�. For the � �  U case in Fig. 3(b),

the piecewise uniform codebook also better than the empir-

ical minimum case when ) 9  ���. We next consider theK � C case, where J
G

E �@VVX. (Note that the left and right

intervals have smaller probabilities than the
K � 1

case.)

We may notice that the maximum training ratio, where the

piecewise uniform codebook is better than the empirically

optimal codebook, is reduced, e.g., to 10 as shown for the

case of � � D
in Fig. 3(a). This tendency is also observed

for the � �  U case in Fig. 3(b). In a manner similar to

the relative performance of uniform quantizers [2, p. 127],

as the codebook size increases, the piecewise uniform code-

book produces more gains, over a fixed uniform codebook.

Hence, the relative performance of the piecewise uniform

codebook of the � �  U case (Fig. 3(b)) is better than the� � D
case (Fig. 3(a)).

6. CONCLUSION

In this paper, the performance of the piecewise uniform code-

book is analyzed for a small TS. It is shown that the piece-

wise uniform codebook is better than the empirically min-

imized codebook case if the TS size is relatively small. In

training codebooks, if we have relatively small TS, then we

should consider a non optimal quantizers, such as the quan-

tizer based on the piecewise uniform codebook, instead of

the quantizers based on the empirically optimal codebook.
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Fig. 3. Average distortions of piecewise uniform and em-

pirically optimal codebooks for the truncated Gaussian den-

sities IG
G

in (1), where
K � 1

(JG

E �@VWB) and
K � C

(JG

E �@VVX). (a) � � D
, �G � 1

, and F � B
. (b) � �  U,�G � 1

, and F � D
.
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