

Design and Analysis of MPEG-2 MP@HL Decoder in Multi-Processor Environments

Seunghwan Yoo1, Hyun-Seung Lee1, Sang-Jo Lee2, Rae-Hong Park1, and Do-Hyung Kim2

1Department of Electronic Engineering

Sogang University
Seoul, Korea

E-mail: {adri00; billy78; rhpark}@sogang.ac.kr

2Samsung Advanced Institute of Technology (SAIT)
Suwon, Korea

E-mail: {sjlee92; hyungk}@samsung.com

ABSTRACT

As demands for high-definition television (HDTV)
increase, the implementation of real-time decoding of
high-definition (HD) video becomes an important issue.
The data size for HD video is so large that real-time
processing of the data is difficult to implement, especially
with software. In order to implement a fast moving picture
expert group-2 decoder for HDTV, we compose five
scenarios that use parallel processing techniques such as
data decomposition, task decomposition, and pipelining.
Assuming the multi digital signal processor environments,
we analyze each scenario in three aspects: decoding speed,
L1 memory size, and bandwidth. By comparing the
scenarios, we decide the most suitable cases for different
situations. We simulate the scenarios in the dual-core and
dual-central processing unit environment by using
OpenMP and analyze the simulation results.

Keywords: HD video, MPEG-2, MP@HL decoder,
multi-processor, parallel processing

1. INTRODUCTION

With the development of display technology, demands for
high-definition (HD) video have increased. Because the
amount of HD video data is tremendous, the processing of
HD video must be fast and efficient for real-time
processing. The amount of raw data to be processed per
second is about 750 Mbits for the HD video with the
following specifications: pixel resolution of 1920 by 1080
with 4:2:0 color format at the frame rate of 30 fps. Moving
picture expert group (MPEG)-2 main profile at high level
(MP@HL) is chosen as standard codec for HD television
(HDTV) [1], and various methods have been proposed and
developed for fast and efficient encoding/decoding process
for HDTV [2]-[8].
Encoding process does not have to be of real-time, but
decoding process should be fast enough to be performed in
real-time. For HD video decoding, both hardware (HW)-
and software (SW)-based methods can be used. Dedicated
HW solutions are fast enough to be of real-time, but its cost
is high and it is not flexible. On the contrary, SW-based
solutions have many advantages [9]: they provide

flexibility without any additional expenses, and run on
general-purpose systems. Thus, in many cases, SW-based
methods are preferred. However, since they are slower, it is
a challenging job to decode HD video in real-time. To
overcome these drawbacks, parallel computation
techniques can be employed. Many researches have
proposed multi-processing architectures for encoding/
decoding processes [9]-[12].
In this paper, we found an efficient way to use the
parallelism for MPEG-2 MP@HL decoder. First, we find
the feasible combinations of parallel computing
techniques: data decomposition, task decomposition, and
data-flow decomposition. Assuming the multi-digital signal
processor (DSP) environments, we analyze each scenario
in terms of the decoding speed, cache memory size, and
bus bandwidth. Simulation results in the dual-core and
dual-central processing unit (CPU) personal computer (PC)
environment are shown and compared with the assumed
multi-DSP environment.
The rest of the paper is structured as follows. First, Section
2 presents an overview of MPEG-2 decoder system.
Section 3 focuses on fundamentals of parallel processing
and its implementation, and Section 4 describes five
scenarios of parallel MPEG-2 MP@HL decoder. We
analyze simulation results in terms of the decoding speed,
cache memory size, and bus bandwidth in Section 5.
Finally, conclusions are given in Section 6.

2. MP@HL MPEG-2 DECODER

Prior to designing a parallel MPEG-2 decoder for HD
video, we need to overview the MPEG-2 video decoder
and modularize by task partition.

2.1 Overview of MPEG-2 Decoder

MPEG-2, which is the enhanced version of MPEG-1, is
one of the standards for video and audio codec. In this
paper, we focus on the Part 2 (Video) of MPEG-2.
Decoding process of MPEG-2 video is the inverse of the
encoding process. Fig. 1(a) shows the block diagram of an
MPEG-2 decoder. First, through variable length decoding
(VLD), information for decoding of compressed video is
obtained. The information from the ‘VLD’ block includes
DCT coefficients, motion vectors (MVs), quantization

211

scale, types of pictures and macroblocks (MBs), mode
information of decoding, and so on. DCT coefficients are
transformed into residual data through inverse quantization
(IQ) and inverse DCT (IDCT). If the data is intra-coded,
the data after IDCT is just the raw data to be displayed. If
predictive-coded or bidirectionally-predictive-coded, the
data is the residual data to be added to block data that is
motion-compensated from adjacent frames.

2.2 Modularization

We functionally modularize the decoder at the MB level
into five blocks: ‘VLD’, ‘Saturation’, ‘IDCT’, ‘MC’, and
‘Adder’.
‘VLD’ module includes not only VLD process, but also
inverse scanning and IQ processes. ‘Saturation’ module
includes saturation process to limit the coefficients for
correct IDCT and mismatch control process. In ‘Adder’
module, the reference data is added to the residual data to
obtain the final decoded image. Fig. 1(b) shows the block
diagram of the modularized MPEG-2 decoder.

2.3 MPEG-2 MP@HL Decoder

MPEG-2 MP@HL is widely used as a standard for HDTV.
Main profile supports a single layer stream, 4:2:0 color
format, and three types of coding frames (I, P, and B). And
high level constrains the resolution (1920 pixels/line and
1152 lines) and the frame rate (30 Hz). Table I shows the
parameter limits of MPEG-2 MP@HL.

3. PARALLEL PROCESSING

3.1 Parallel Programming

Parallel programming is the design and implementation of
parallel computer programs which can be used in parallel
computing systems. For parallel programming, data/task/
data-flow decomposition techniques are exploited.
For data decomposition, we divide the data into luminance
components (Y) and chrominance components (C). Since
the processes of Y and C are independent of each other,
they can be well-separated. In order to separate the data,
each task block except ‘VLD’ is spilt into two sub-blocks
for processing of Y and C data.
We also take advantage of data-flow decomposition –
pipelining. Pipelining is a parallelization technique in
which multiple instructions are overlapped in execution.
Efficiency of pipelining depends on how well the load of
each stage is balanced. Five modules functionally divided
cannot be processed with the same data simultaneously, but
can be processed by pipelining because the data flows in
the decoding process.

3.2 Performance

Performance of parallel processing is represented by
Amdahl’s law [13], which is expressed in terms of the
speedup defined as

speedup =
nPS /

1
+

, (1)

where S and P represent serial and parallel portions,
respectively (S+P=1), and n denotes the number of
execution units, or the number of threads in our case. In (1),
the speedup is greater than 1 if n is larger than one, and the
speedup becomes higher when the parallel portion becomes
larger.
In a real parallel system with the overhead, Amdahl’s law
can be represented as

speedup =
)(/

1
nHnPS ++

 (2)

where H(n) is the overhead of the parallel processing. If the
overhead is big, the speedup becomes small. It can be even
smaller than one.
If the system is parallelized by pipelining, (2) can be
modified as

speedup =
)(),...,,max(

1

21 nHPPP n +
 (3)

where iP)1(ni ≤≤ represents the parallel portions
corresponding to the i-th PE in the pipelining
(P1+P2+…+Pn = 1).

Table 1: Constraints of MPEG-2 MP@HL

No. of
layers

Layer
identifi-
cation

Scalable
mode

Maximum
sample density

(horizontal/verti-
cal/frame)

Maximum
sample rate

(Hz)

Maximum
total bit rate

(bps)

Maximum total
video buffering
verifier buffer

(bits)

Profile and
level

indication

1 0 Base 1920/1152/60 62,668,800 80,000,000 9,781,248 MP@HL

Variable
length

decoding

Inverse
scanning

Inverse
quantization

Inverse
DCT

Motion
compensation

Coded
data

Decoded
data

(a)

VLD Saturation IDCT Adder

MC

Coded
data

Decoded
data

(b)

Fig. 1: (a) Block diagram of an MPEG-2 decoder, and (b)
the modularized MPEG-2 decoder.

212

3.3 Multi-Processor Environment

A multi-processing system uses two or more CPUs within a
single computer system. In a multi-processing system, we
can achieve a faster system by running multiple processes
concurrently. We use the symmetric multiprocessing (SMP)
system in which all the processors are identical and
connected to the same shared memory.
DSP is widely used in a video codec since it is designed for
real-time processing. The current technologies for DSP,
such as lower design rules, fast-access cache, and a wider
bus system, give a great performance. Some models use
clock speed up to 1 GHz, perform eight operations per
clock-cycle, or are capable of 8000 million instructions per
second (MIPS) [14].
In this paper, we assume the multi-DSP environment.
Although experiments are performed in a PC environment,
we analyze the system as a multi-DSP system. It will give
us more practical information because a multi-DSP system
fits to the real-time decoding system. In our experiments,
a multi-core, multi-processor system is used. The
system is composed of two Dual-Core Intel® Xeon®
processors – a total of four cores.

3.4 Implementation

For parallel programming, we utilize OpenMP which is an
application programming interface (API) that supports
shared memory multiprocessing programming in C/C++
and Fortran [15].
We use the MB-level parallelism as the thread granularity.
At each MB, the coded data is decoded using parallel
programming. Fig. 2 shows an example of the pseudo-code
for Scenario 3, which will be described in Section 4.3.
Each section in the code corresponds to each PE. Queue
buffer is required for storing the data-flow. Since we use

MB-level parallelism, a small space is needed only for MB
decoding. We implement a circular queue whose length is
equal to the number of stages of the pipeline.

4. SCENARIOS FOR PARALLEL MP@HL

MPEG-2 DECODER

Using the parallel computing techniques mentioned in
Section 3.1, we construct the parallel MP@HL MPEG-2
decoders. We propose five scenarios assuming that there
are two or three DSPs for decoding processing. Fig. 3(a)
shows the two-DSP system whereas Fig. 3(b) illustrates the
three-DSP system. Table 2 lists the composition of each
scenario for a multi-DSP MPEG-2 decoder.

4.1 Scenario 1

In this scenario, two DSPs are used. One DSP performs
‘VLD’ while the other performs the remaining operations –
‘Saturation’, ‘IDCT’, ‘MC’, and ‘Adder’. This scenario is
performed with a two-stage pipeline because the decoder
consists of two PEs. This scenario takes advantage of data-
flow decomposition with task partitioning.

4.2 Scenario 2

This scenario is almost the same as Scenario 1 except that
‘Saturation’ block is performed in the first DSP, not in the
second.

4.3 Scenario 3

This scenario employs three DSPs. The first DSP performs
‘VLD’, and the second DSP performs ‘Saturation’ and
‘IDCT’ operations. The third DSP has ‘MC’ and ‘Adder’
functional blocks. This scenario is performed with a
three-stage pipeline because the decoder consists of three
PEs. It should be faster than Scenarios 1 and 2 due to the
increased number of PEs while its cost also increases and it
needs the larger bus bandwidth requiring faster clock
speed.

4.4 Scenario 4

Scenario 4 is almost the same as Scenario 3 except that
‘Saturation’ block is in the first DSP, not in the second. The
relation between Scenarios 3 and 4 is similar to that of

#pragma omp parallel sections
 #pragma omp section
 VLD
 put queue data
 #pragma omp section
 if (not first MB)
 {
 get queue data
 IQ
 IDCT
 put queue data
 }
 #pragma omp section
 if (neither first nor second MB)
 {
 get queue data
 MC
 Adder
 }

DSP0

L1
memory

DSP1

L1
memory

External
memory

DSP1

L1
memory

DSP2

L1
memory

External
memory

DSP0

L1
memory

(a) (b)

Fig. 3: MPEG-2 systems in a multi-DSP environment. (a)
Two-DSP system, (b) three-DSP system.

Fig 2: Pseudo-code of the multi-threaded code for Scenario
3 of MPEG-2 decoder.

213

Table 2: Composition of each scenario
 DSP0 DSP1 DSP2

Scenario 1 ‘VLD’ The rest -

Scenario 2 ‘VLD’,
‘Saturation’ The rest -

Scenario 3 ‘VLD’ ‘Saturation’,
‘IDCT’

‘MC’,
‘Adder’

Scenario 4 ‘VLD’,
‘Saturation’ ‘IDCT’ ‘MC’,

‘Adder’

Scenario 5 ‘VLD’ The rest (Y) The rest (C)

Scenarios 1 and 2.

4.5 Scenario 5

In the first DSP, ‘VLD’ is performed. The Y data and the C
data are processed in the second and third DSPs,
respectively. In this scenario, we take advantage of data
decomposition method in addition to task and data-flow
decompositions. Since decomposed data (Y and C) can be
processed simultaneously in parallel, we can use a
two-stage (not a three-stage) pipeline with three DSPs. So
it needs only as large bus bandwidth as Scenarios 1 and 2
while the speed will increase. Unfortunately, the imbalance
of data partitioning (Y:C=2:1) leads to some inefficiency.

5. PERFORMANCE ANALYSIS AND
DISCUSSTIONS

In this section, we analyze the performance of the proposed
decoder scenarios in view of the decoding speed, L1
memory size, and required bandwidth. For analysis and
experiment, we use the encoded bitstream of the HD video
‘Crossroad’ (100 frames), which is encoded with MPEG-2
MP@HL.

5.1 Decoding Speed

Decoding speed is the most important performance
measure in our cases, because our goal is to develop a fast
MPEG-2 MP@HL decoder. First, we will take a look at the
speed of the sequential decoder, and then estimate the
speeds of parallel decoders based on the speed of the
sequential one. Comparing the estimated speeds with the
experimental results, we will analyze the simulation
results.

5.1.1 Sequential decoder
In a sequential decoder, only a single thread is used to
decode the bitstream. The observed decoding speed is
shown in Table 3. The decoding speed is measured in
cycles per MB.

5.1.2 Parallel decoder
Based on the speed of the sequential decoder, we calculate
the speed of parallel decoders that are described in Section
4. It is assumed in the calculation that the sequential
decoding is parallelized without any additional overhead

Table 3: Decoding cycles of a sequential decoder

Block Decoding speed
(cycles/MB) Percentage (%)

‘VLD’ 35,323 32.8

‘Saturation’ Y 8,099 7.5
C 4,228 3.9

‘IDCT’ Y 21,959 20.4
C 10,723 10.0

‘MC’ Y 12,003 11.2
C 6,631 6.2

‘Adder’ Y 5,600 5.2
C 3,082 2.9

Total 107,648 100.0

Table 4: Decoding cycles of parallel decoders

Decoder type Decoding speed
(cycles/MB) Speedup

Sequential
decoder 107,648 1.00

Scenario 1 72,325 1.49
Scenario 2 59,998 1.79
Scenario 3 45,009 2.39
Scenario 4 47,650 2.26
Scenario 5 48,217 2.23

such as threading overhead.
For example, in Scenario 1 ‘VLD’ and the rest parts are
performed by pipelining, in which the decoding time is
calculated by max operation: max((35,323), (72,325)) =
72,325 cycles/MB. Scenario 3 has three task blocks:
(‘VLD’), (‘Saturation’, ‘IDCT’), and (‘MC’, ‘Adder’).
Thus, the decoding speed is given by max((35,323), (8,099
+ 4,228 + 21,959 + 10,723), (12,003 + 6,631 + 5,600 +
3,082)) = 45,009 cycles/MB. Table 4 lists the expected
decoding time and the corresponding speedup of the
proposed parallel decoders.
Using two DSPs, the improvement by factor of 1.79
(Scenario 2) can be expected while we can speed up by a
factor of 2.39 (Scenario 3) with three DSPs. If the load
distribution is even, the expected value will be the same as
the number of DSPs employed.

5.1.3 Experimental results and analysis
As mentioned in Section 3.4, we implemented the five
scenarios of MPEG-2 decoder using OpenMP. However,
they are not performed in real multi-DSP environments.
Thus, there exist other factors which are not needed in the
multi-DSP environments.
The observed decoding speeds are shown in Table 5. As
shown in Table 5, all the speedups are smaller than one,
which means that parallel decoders are slower than the
sequential one unlike those expected in the previous
section. This is resulted from the fact that the experiments
are performed in PC environments rather than in
multi-DSP systems. The reason of the inconsistency can be
summarized in three factors: fluctuation of the load, data
queuing, and threading overhead.
First, fluctuation of the load degrades the performance. We
divide the task blocks based on the averaged decoding time
of each block. However, the load on each block changes
from MB to MB according to the MB type. In order to

214

Table 5: Decoding speed from experiments

Decoder type Decoding speed
(cycles/MB) Speedup

Sequential
decoder 116,898 1.00

Scenario 1 159,234 0.73
Scenario 2 150,420 0.78
Scenario 3 131,266 0.89
Scenario 4 128,393 0.91
Scenario 5 137,929 0.85

Table 6: Decoding loads (cycles/MB) of each MB type

 Skip Intra Pred1 Pred2

‘VLD’ 6,800 58,076 35,041 38,503
9.2% 52.2% 32.8% 29.1%

‘Saturation’ 10,113 10,197 10,246 10,263
13.7% 9.2% 9.6% 7.7%

‘IDCT’ 33,649 34,788 34,253 34,202
45.7% 31.2% 32.0% 25.8%

‘MC’ 14,079 123 18,038 40,055
19.1% 0.1% 16.9% 30.2%

‘Adder’ 9,069 8,147 9,417 9,513
12.3% 7.3% 8.8% 7.2%

Total 73,711 111,332 106,996 132,536
100% 100% 100% 100%

1 unidirectional prediction mode
2 bidirectional prediction mode

check the fluctuation of the load, we measure the load of
each module in view of the MB type. As in Table 6, the
amount of time to perform ‘VLD’ and ‘MC’ depends on the
MB mode, whereas ‘Saturation’, ‘IDCT’, and ‘Adder’ need
the same amount of time. ‘VLD’ module takes the least
time in Skip mode, and the most time in Intra mode. The
speed of ‘MC’ block is dependent on the prediction mode.
Second, data-queuing for pipelining needs additional time
to the time of decoding process. To preserve the data-flow,
queue memory is required, which takes time to put data to
and to get data from the queue. Table 7 shows the load
from queuing, in which ｀Put1’ and ‘Get1’ operations
carry the whole data of an MB, whereas ‘Put2’ just the
coefficient data.
Third, there exists threading overhead in PC environments.
These overheads are from creating, managing, and
removing threads. To measure the threading overhead, we
measure the time to be taken in the threading code
(OpenMP), which is dependent on the number of threads as
shown in Table 8. Speedups without threading overhead are
shown in Table 9. Decoding speeds in Table 9 are
calculated by simply subtracting threading loads from
decoding speeds in Table 5. If there is no threading load,
the speedup is greater than one in every scenario.

5.2 L1 Memory

Level 1 (L1) cache is on-chip memory that exists in the
processor. Each DSP should have suitable L1 memory
space enough to store the temporary data for decoding of
each MB. If the size of L1 memory is too small, data
transfer operations from external memory occur frequently,
so the speed is reduced. Since we use an MB-level

Table 7: Queuing loads (cycles/MB)

Put1 Get1 Put2
4,016 3,835 1,181

Table 8: Threading loads (cycles/MB)

Scenarios 1/2 54,850
Scenarios 3/4/5 66,139

Table 9: Decoding speed without threading overhead

Decoder type Decoding speed
(cycles/MB) Speedup

Sequential
decoder 116,898 1.00

Scenario 1 104,384 1.12
Scenario 2 95,570 1.22
Scenario 3 65,127 1.79
Scenario 4 62,254 1.88
Scenario 5 71,790 1.63

Table 10: L1 memory size (bytes) of each scenario

 DSP0 DSP1 DSP2 Total
Scenario 1 1,163 2,780 - 3,943
Scenario 2 1,163 2,780 - 3,943
Scenario 3 1,163 1,536 2,012 4,711
Scenario 4 1,163 1,536 2,012 4,711
Scenario 5 1,163 1,960 888 4,011

parallelism, it is desirable that the L1 memory be as big as
the data required for decoding an MB. In Table 10, the
required L1 memory sizes of each DSP in the proposed
scenarios are listed.
As shown in Table 10, the required cache size is smaller
than 5 KB in all the scenarios. Since most of processors
provide the cache memory bigger than 16 KB, all required
sizes are small enough to use.

5.3 Bus Bandwidth

The proposed multi-DSP system is composed of multiple
DSPs, external memory, and shared bus which connects
each component. Bus bandwidth, which is defined by the
amount of transferred data per second, is considered in two
cases here.
In the first case, it is assumed that the only way for data
transfer is via the shared bus, through which all the data are
delivered. In the second case, it is assumed that there exist
data paths between DSPs unlike the first case. Bus
bandwidth is determined only by the amount of data
transferred between DSP and external memory in this case.
The bus bandwidths of each scenario in two cases are listed
in Table 11. Also, bus clock speeds corresponding to each
scenario are given in Table 12. The bus bandwidths are
divided by bus width (32 bits) to give the bus clock speeds.
In the first case, Scenarios 1 and 2 require the lowest bus
clock speed (142 MHz) and Scenarios 3 and 4 demands the
highest bus clock speed (193 MHz). And if there exist
additional paths between DSPs, lower bus clock speed (92
MHz) is required. The required bus clock speeds do not
exceed 200 MHz, which means that the system is usable in

215

Table 11: Bus bandwidth (Mbps) of each scenario

 Case 1 Case 2
Scenario 1 4,557 2,943
Scenario 2 4,557 2,943
Scenario 3 6,171 2,943
Scenario 4 6,171 2,943
Scenario 5 4,666 2,943

Table 12: Bus clock speed (MHz) of each scenario

 Case 1 Case 2
Scenario 1 142 92.0
Scenario 2 142 92.0
Scenario 3 193 92.0
Scenario 4 193 92.0
Scenario 5 146 92.0

a view of bus bandwidth.

5.4 Choice of the Scenario

The choice of scenario should be made with consideration
of the specifications of the system to be used. First, in
aspect of the speed, the best scenario is Scenario 3 or 4. In
other words, they divide the load the most evenly among
five scenarios. Second, in terms of the memory, Scenarios
1 and 2 are better. They require the least amount of L1
cache memory. However, the memory required in every
scenario is small enough that we can neglect it. Third, in
respect to bus bandwidth, Scenarios 1 and 2 are the best
while Scenarios 3 and 4 are the worst.
In addition, the cost can be considered. The cost of the
given scenarios depends on the number of processors used.
Therefore, the cost of Scenarios 3, 4, and 5 is higher than
that of Scenarios 1 and 2.

6. CONCLUSIONS

In this paper, we compose five scenarios of MPEG-2
MP@HL decoder in multi-DSP environment and analyze
the performance of each scenario in terms of decoding
speed, cache memory size, and bus bandwidth. Although
simulations in PC environment result in low speedups, our
analysis shows the efficiency of the proposed system in
multi-DSP environment. Parallel computing techniques in
appropriate environment raise the performance of system.
Future research will be on the similar works on the latest
codec such as H.264.

7. ACKNOWLEDGEMENT

This work was supported in part by Samsung Advanced
Institute of Technology (SAIT).

8. REFERENCES

[1] ISO/IEC 13818-2, Generic Coding of Moving Pictures

and Associated Audio Information: Video, Nov. 1994.
[2] A. Cugnini and R. Shen, “MPEG-2 video decoder for

the digital HDTV Grand Alliance system,” IEEE Trans.
Consumer Electronics, vol. 41, no. 3, pp. 748-753,

Aug. 1995.
[3] C. L. Lee, et al., “Implementation of digital HDTV

video decoder by multiple multimedia video
processors,” IEEE Trans. Consumer Electronics, vol.
42, no. 3, pp. 395-401, Aug. 1996.

[4] H. Yamauchi, et al., “Single chip video processor for
digital HDTV,” IEEE Trans. Consumer Electronics,
vol. 47, no. 3, pp. 394-404, Aug. 2001.

[5] N. Ling and N.-T. Wang, “A real-time video decoder
for digital HDTV,” J. VLSI Signal Processing, vol. 33,
no. 3, pp. 295-306, Mar. 2003.

[6] Y. Hu, A. Simpson, K. McAdoo, and J. Cush, “A high
definition H.264/AVC hardware video decoder core
for multimedia SoC’s,” in Proc. IEEE Int. Symposium
Consumer Electronics, pp. 385-389, Reading, UK,
Sep. 2004.

[7] T.-W. Chen, et al., “Architecture design of H.264/AVC
decoder with hybrid task pipelining for high definition
videos,” in Proc. IEEE Int. Symposium Circuits and
Systems, vol. 3, pp. 2931-2934, Kobe, Japan, May
2005.

[8] T.-C. Chen, et al., “Analysis and architecture design of
an HDTV720p 30 frames/s H.264/AVC encoder,”
IEEE Trans. Circuits and Systems for Video
Technology, vol. 16, no. 6, pp. 673-688, June 2006.

[9] A. Bilas, J. Fritts, and J. P. Singh, “Real-time parallel
MPEG-2 decoding in software,” in Proc. Parallel
Processing Symposium, pp. 197-203, Geneva,
Switzerland, Apr. 1997.

[10] E. B. van der Tol, E. G. T. Jaspers, and R. H.
Gelderblom, “Mapping of H.264 decoding on a
multiprocessor architecture,” in Proc. SPIE Conf.
Image and Video Communications and Processing, vol.
5022, pp. 707-718, Santa Clara, CA, USA, Jan. 2003.

[11] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar, “Towards
efficient multi-level threading of H.264 encoder on
Intel hyper-threading architectures,” in Proc. IEEE
Parallel and Distributed Processing Symposium, pp.
63-72, Santa Fe, NM, USA, Apr. 2004.

[12] T. R. Jacobs, V. A. Chouliaras, and D. J. Mulvaney,
“Thread-parallel MPEG-2, MPEG-4 and H.264 video
encoders for SoC multi-processor architectures,” IEEE
Trans. Consumer Electronics, vol. 52, no. 1, pp.
269-275, Feb. 2006.

[13] G. Amdahl, “Validity of the single processor approach
to achieving large-scale computing capabilities,” in
Proc. American Federation of Information Processing
Societies Conf., vol. 30, pp. 483-485, Atlantic City,
NJ, USA, Apr. 1967.

[14] C6000TM High Performance DSPs, http://www.ti.
com.

[15] OpenMP Architecture Review Board, OpenMP
Application Program Interface. Version 2.5, May 2005,
http://www.openmp.org.

216

